Categorification of Wedderburn’s basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}[S_{n}]$$\end{document}

被引:1
作者
Volodymyr Mazorchuk
Catharina Stroppel
机构
[1] Uppsala University,Department of Mathematics
[2] University of Glasgow,Department of Mathematics
[3] University Gardens,Mathematisches Institut
[4] Universität Bonn,undefined
关键词
Primary 17B10; Secondary 17B35, 20B30; Categorification; simple modules; projective module; projective functor; annihilator; Lie algebra; universal enveloping algebra; Kahdan-Lusztig basis;
D O I
10.1007/s00013-008-2571-6
中图分类号
学科分类号
摘要
M. Neunhöffer studies in [21] a certain basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}[S_{n}]$$\end{document} with the origins in [14] and shows that this basis is in fact Wedderburn’s basis, hence decomposes the right regular representation of Sn into a direct sum of irreducible representations (i.e. Specht or cell modules). In the present paper we rediscover essentially the same basis with a categorical origin coming from projective-injective modules in certain subcategories of the BGG-category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}$$\end{document}. Inside each of these categories, there is a dominant projective module which plays a crucial role in our arguments and will additionally be used to show that Kostant’s problem ([10]) has a negative answer for some simple highest weight module over the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}}_{4}$$\end{document}. This disproves the general belief that Kostant’s problem should have a positive answer for all simple highest weight modules in type A.
引用
收藏
页码:1 / 11
页数:10
相关论文
empty
未找到相关数据