M. Neunhöffer studies in [21] a certain basis of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{C}}[S_{n}]$$\end{document} with the origins in [14] and shows that this basis is in fact Wedderburn’s basis, hence decomposes the right regular representation of Sn into a direct sum of irreducible representations (i.e. Specht or cell modules). In the present paper we rediscover essentially the same basis with a categorical origin coming from projective-injective modules in certain subcategories of the BGG-category \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{O}}$$\end{document}. Inside each of these categories, there is a dominant projective module which plays a crucial role in our arguments and will additionally be used to show that Kostant’s problem ([10]) has a negative answer for some simple highest weight module over the Lie algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{sl}}_{4}$$\end{document}. This disproves the general belief that Kostant’s problem should have a positive answer for all simple highest weight modules in type A.