Polarization Problem on a Higher-Dimensional Sphere for a Simplex

被引:0
作者
Sergiy Borodachov
机构
[1] Towson University,Department of Mathematics
来源
Discrete & Computational Geometry | 2022年 / 67卷
关键词
Generalized Chebyshev constant; Maximal polarization; Potential; Sphere; Simplex; Optimal covering problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of maximizing the minimal value over the sphere Sd-1⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}\subset {\mathbb {R}}^d$$\end{document} of the potential generated by a configuration of d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d+1$$\end{document} points on Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, where f:[0,4]→(-∞,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,4]\rightarrow (-\infty ,\infty ]$$\end{document} is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative f′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'$$\end{document}. We prove that the configuration of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} is optimal. This result is new for d>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>3$$\end{document} (certain special cases for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document}.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 34 条
  • [1] Ambrus G(2013)Chebyshev constants for the unit circle Bull. Lond. Math. Soc. 45 236-248
  • [2] Ball KM(2019)Polarization, sign sequences, and isotropic vector systems Pac. J. Math. 303 385-399
  • [3] Erdélyi T(2014)Asymptotics of discrete Riesz Potential Anal. 41 35-49
  • [4] Ambrus G(2018)-polarization on subsets of Trans. Am. Math. Soc. 370 6973-6993
  • [5] Nietert S(2017)-dimensional manifolds ScienceAsia 43 267-274
  • [6] Borodachov SV(2013)Optimal discrete measures for Riesz potentials J. Approx. Theory 171 128-147
  • [7] Bosuwan N(2008)Constant Riesz potentials on a circle in a plane with an application to polarization optimality problems Potential Anal. 28 241-260
  • [8] Borodachov SV(2013)Riesz polarization inequalities in higher dimensions Discrete Comput. Geom. 50 236-243
  • [9] Hardin DP(2020)Transfinite diameter, Chebyshev constant and energy on locally compact spaces Potential Analysis 253 157-168
  • [10] Reznikov A(2011)Polarization optimality of equally spaced points on the circle for discrete potentials Pac. J. Math. 167 69-89