The rapid development of computational toxicology

被引:0
作者
Hermann M. Bolt
Jan G. Hengstler
机构
[1] Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo),Department of Toxicology
来源
Archives of Toxicology | 2020年 / 94卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1371 / 1372
页数:1
相关论文
共 115 条
[1]  
Amberg A(2016)Principles and procedures for implementation of ICH M/ recommended (Q)SAR analyses Regul Toxicol Pharmacol 77 13-24
[2]  
Beilke L(2019)Nano-(Q)SAR for cytotoxicity prediction of engineered nanomaterials Molecules 24 4537-2460
[3]  
Bercu J(2016)Toward a unifying strategy for the structure-based prediction of toxicological endpoints Arch Toxicol 90 2445-336
[4]  
Bower D(2010)Is computational toxicology withering on the vine? Arch Toxicol 84 333-3338
[5]  
Buglak AA(2008)Some molecular descriptors for non-specific chromosomal genotoxicity based on hydrophobic interactions Arch Toxicol 82 3334-140
[6]  
Zherdev AV(2014)Progress in computational toxicology J Pharmacol Toxicol Methods 69 115-3174
[7]  
Dzantiev BB(2017)Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing Arch Toxicol 91 3157-244
[8]  
Carrió P(2018)Computational toxicology and drug discovery in computational toxicology: methods and protocols Meth Mol Biol 1800 233-356
[9]  
Sanz F(2020)In vitro prediction of organ toxicity: the challenges of scaling secondary mechanisms of toxicity Arch Toxicol 94 353-2147
[10]  
Pastor M(2019)Exploration of chemical approaches to predict the toxicity of chemical mixtures Toxics 7 15-688