Brownian motion in confined geometries

被引:0
|
作者
S. M. Bezrukov
L. Schimansky-Geier
G. Schmid
机构
[1] NICHD,Program in Physical Biology
[2] National Institutes of Health,Institut für Physik
[3] Humboldt-Universität zu Berlin,Institut für Physik
[4] Universität Augsburg,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In a great number of technologically and biologically relevant cases, transport of micro- or nanosized objects is governed by both omnipresent thermal fluctuations and confining walls or constrictions limiting the available phase space. The present Topical Issue covers the most recent applications and theoretical findings devoted to studies of Brownian motion under confinement of channel-like geometries.
引用
收藏
页码:3021 / 3025
页数:4
相关论文
共 50 条
  • [21] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [22] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [23] FREEZING IN CONFINED GEOMETRIES
    SOKOL, PE
    MA, WJ
    HERWIG, KW
    SNOW, WM
    WANG, Y
    KOPLIK, J
    BANAVAR, JR
    APPLIED PHYSICS LETTERS, 1992, 61 (07) : 777 - 779
  • [24] Water in confined geometries
    Nigro, V.
    Bruni, F.
    Ricci, M. A.
    WATER: FUNDAMENTALS AS THE BASIS FOR UNDERSTANDING THE ENVIRONMENT AND PROMOTING TECHNOLOGY, 2015, 187 : 209 - 222
  • [25] Water in confined geometries
    Teixeira, J
    Zanotti, JM
    BellissentFunel, MC
    Chen, SH
    PHYSICA B, 1997, 234 : 370 - 374
  • [26] Diffusion in Confined Geometries
    Burada, P. Sekhar
    Haenggi, Peter
    Marchesoni, Fabio
    Schmid, Gerhard
    Talkner, Peter
    CHEMPHYSCHEM, 2009, 10 (01) : 45 - 54
  • [27] Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach
    Changho Kim
    George Em Karniadakis
    Journal of Statistical Physics, 2015, 158 : 1100 - 1125
  • [28] Confined Brownian motion of individual magnetic nanoparticles on a chip: Characterization of magnetic susceptibility
    van Ommering, Kim
    Nieuwenhuis, Jeroen H.
    van IJzendoorn, Leo J.
    Koopmans, Bert
    Prins, Menno W. J.
    APPLIED PHYSICS LETTERS, 2006, 89 (14)
  • [29] Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach
    Kim, Changho
    Karniadakis, George Em
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1100 - 1125
  • [30] Free and confined Brownian motion in viscoelastic Stokes-Oldroyd B fluids
    Paul, Shuvojit
    Roy, Basudev
    Banerjee, Ayan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (34)