Brownian motion in confined geometries

被引:0
|
作者
S. M. Bezrukov
L. Schimansky-Geier
G. Schmid
机构
[1] NICHD,Program in Physical Biology
[2] National Institutes of Health,Institut für Physik
[3] Humboldt-Universität zu Berlin,Institut für Physik
[4] Universität Augsburg,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In a great number of technologically and biologically relevant cases, transport of micro- or nanosized objects is governed by both omnipresent thermal fluctuations and confining walls or constrictions limiting the available phase space. The present Topical Issue covers the most recent applications and theoretical findings devoted to studies of Brownian motion under confinement of channel-like geometries.
引用
收藏
页码:3021 / 3025
页数:4
相关论文
共 50 条
  • [1] Brownian motion in confined geometries
    Bezrukov, S. M.
    Schimansky-Geier, L.
    Schmid, G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (14): : 3021 - 3025
  • [2] Statistics of the maximum and the convex hull of a Brownian motion in confined geometries
    De Bruyne, Benjamin
    Benichou, Olivier
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (14)
  • [3] Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries
    Jeon, Jae-Hyung
    Metzler, Ralf
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [4] LIGHT-SCATTERING-STUDIES OF BROWNIAN-MOTION IN CONFINED GEOMETRIES
    OSTROWSKY, N
    LOBRY, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1111 - 1118
  • [5] Clustering of branching Brownian motions in confined geometries
    Zoia, A.
    Dumonteil, E.
    Mazzolo, A.
    de Mulatier, C.
    Rosso, A.
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [6] CONFINED BROWNIAN-MOTION
    FAUCHEUX, LP
    LIBCHABER, AJ
    PHYSICAL REVIEW E, 1994, 49 (06) : 5158 - 5163
  • [7] Mechanisms of Cell Motion in Confined Geometries
    Hawkins, R. J.
    Voituriez, R.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (01) : 84 - 105
  • [8] Communication: Impact of inertia on biased Brownian transport in confined geometries
    Martens, S.
    Sokolov, I. M.
    Schimansky-Geier, L.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (11):
  • [9] Random walks and Brownian motion:: A method of computation for first-passage times and related quantities in confined geometries
    Condamin, S.
    Benichou, O.
    Moreau, M.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [10] Nonergodicity of confined superdiffusive fractional Brownian motion
    Liang, Yingjie
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    PHYSICAL REVIEW E, 2023, 108 (05)