Application of the Genetic Algorithm to the Multi-Objective Optimization of Air Bearings

被引:0
作者
Nenzi Wang
Yau-Zen Chang
机构
[1] Chang Gung University,Department of Mechanical Engineering
来源
Tribology Letters | 2004年 / 17卷
关键词
genetic algorithm; optimization; air bearings;
D O I
暂无
中图分类号
学科分类号
摘要
A feasible solution must be obtained in a reasonable time with high probability of global optimum for a complex tribological design problem. To meet this decisive requirement in a multi-objective optimization problem, the popular and powerful genetic algorithms (GAs) are adopted in an illustrated air bearing design. In this study, the goal of multi-objective optimization is achieved by incorporating the criterion of Pareto optimality in the selection of mating groups in the GAs. In the illustrated example the diversity of group members in the evolution process is much better maintained by using Pareto ranking method than that with the roulette wheel selection scheme. The final selection of the optimal point of the points satisfied the Pareto optimality is based on the minimum–maximum objective deviation criterion. It is shown that the application of the GA with the Pareto ranking is especially useful in dealing with multi-objective optimizations. A hybrid selection scheme combining the Pareto ranking and roulette wheel selections is also presented to deal with a problem with a combined single objective. With the early generations running the Pareto ranking criterion, the resultant divergence preserved in the population benefits the overall GA's performance. The presented procedure is readily adoptable for parallel computing, which deserves further study in tribological designs to improve the computational efficiency.
引用
收藏
页码:119 / 128
页数:9
相关论文
共 34 条
[1]  
Hashimoto H.(2001)undefined ASME J. Tribol. 123 305-undefined
[2]  
Matsumoto K.(2001)undefined ASME J. Tribol. 123 501-undefined
[3]  
Yoshimoto S.(1997)undefined ASME J. Tribol. 119 486-undefined
[4]  
Kohno K.(2000)undefined Tribol. Trans. 43 377-undefined
[5]  
Cui C.(2001)undefined ASME J. Tribol. 123 541-undefined
[6]  
Ono K.(1999)undefined ASME J. Tribol. 121 575-undefined
[7]  
Wang N.(2003)undefined Tribol. Trans. 46 134-undefined
[8]  
Ho C.-L.(2000)undefined Tribol. Trans. 43 837-undefined
[9]  
Cha K.-C.(2000)undefined Tribol. Trans. 43 842-undefined
[10]  
Kang T.-S.(2002)undefined Tribol. Trans. 45 471-undefined