Integrable super extensions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(-2,-2)$$\end{document} equation

被引:0
作者
Hanyu Zhou
Kai Tian
机构
[1] Department of Mathematics,
[2] School of Science,undefined
[3] China University of Mining and Technology,undefined
关键词
linear spectral problem; conservation law; reciprocal transformation; Hamiltonian structure;
D O I
10.1134/S0040577922030059
中图分类号
学科分类号
摘要
引用
收藏
页码:353 / 362
页数:9
相关论文
共 54 条
  • [1] Girardello L.(1978)Inverse scattering-like problem for supersymmetric models Phys. Lett. B 77 267-269
  • [2] Sciuto S.(1978)On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations Phys. Lett. B 78 413-416
  • [3] Chaichian M.(1983)Supersymmetric two-dimensional Toda lattice Commun. Math. Phys. 88 63-76
  • [4] Kulish P. P.(1984)A super Korteweg–de Vries equation: An integrable system Phys. Lett. A 102 213-215
  • [5] Olshanetsky M. A.(1984)Bosons and fermions interacting integrably with the Korteweg– de Vries field J. Phys. A: Math. Gen. 17 L869-L872
  • [6] Kupershmidt B. A.(1985)Super Korteweg–de Vries equations associated to super extensions of the Virasoro algebra Phys. Lett. A 109 417-423
  • [7] Kupershmidt B. A.(1987)Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory Theoret. and Math. Phys. 72 899-904
  • [8] Kupershmidt B. A.(1988)Analog of the Korteweg–de Vries equation for the superconformal algebra J. Soviet Math. 41 970-975
  • [9] Khovanova T. G.(1988)Supersymmetric extension of the Korteweg–de Vries equation J. Math. Phys. 29 2499-2506
  • [10] Kulish P. P.(1988) superconformal algebra and integrable Phys. Lett. B 215 718-722