Some relationships between an operator and its transform Sr(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{r}(T)$$\end{document}

被引:0
作者
Safa Menkad
Sohir Zid
机构
[1] University of Batna 2,Laboratory of Mathematical Techniques (LTM), Department of Mathematics, Faculty of Mathematics and Informatics
[2] University of Batna 2,Department of Mathematics, Faculty of Mathematics and Informatics
关键词
Polar decomposition; Closed range operators; transform; Moore–Penrose inverse; 47A05; 47B49;
D O I
10.1007/s43036-024-00317-w
中图分类号
学科分类号
摘要
Let T∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T \in \mathcal {B}(\mathcal {H})$$\end{document} be a bounded linear operator on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {H}$$\end{document}, and let T=U|T|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T = U \vert T \vert $$\end{document} be the polar decomposition of T. For any r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r > 0$$\end{document}, the transform Sr(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{r}(T)$$\end{document} is defined by Sr(T)=U|T|rU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{r}(T) = U \vert T \vert ^{r} U$$\end{document}. In this paper, we discuss the transform Sr(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{r}(T)$$\end{document} of some classes of operators such as p-hyponormal and rank one operators. We provide a new characterization of invertible normal operators via this transform. Afterwards, we investigate when an operator T and its transform Sr(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{r}(T) $$\end{document} both have closed ranges, and show that this transform preserves the class of EP operators. Finally, we present some relationships between an EP operator T, its transform Sr(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{r}(T)$$\end{document} and the Moore–Penrose inverse T+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T^{+} $$\end{document}.
引用
收藏
相关论文
共 26 条
  • [1] Aluthge A(1990)On p-hyponormal operators for Integral Equ. Oper. Theory 13 307-315
  • [2] Campbell SL(1975)EP operators and generalized inverses Can. Math. Bull. 18 327-333
  • [3] Meyer CD(2017)Product commuting maps with the-Aluthge transform J. Math. Anal. Appl. 449 579-600
  • [4] Chabbabi F(2000)Products of EP operators in Hilbert spaces Proc. Am. Math. Soc. 129 1727-1731
  • [5] Djordjević DS(2007)Characterizations of normal, hyponormal and EP operators J. Math. Appl. 329 1181-1190
  • [6] Djordjević DS(2008)Applications of polar decompositions of idempotent and 2-nilpotent operators Linear Multilinear Algebra 56 69-79
  • [7] Furuta T(1980)An operator inequality Math. Ann. 246 249-250
  • [8] Hansen F(1951)Beitr Math. Ann. 123 415-438
  • [9] Heinz E(2017)ge zur St Filomat 31 6441-6448
  • [10] Jabbarzadeh MR(2000)rungstheorie der Spektralzerlegung Integral Equ. Oper. Theory 37 437-448