Mutually Unbiased Property of Special Entangled Bases

被引:0
作者
Yuan-Hong Tao
Xin-Lei Yong
Yi-Fan Han
Shu-Hui Wu
Cai-Hong Wang
机构
[1] Zhejiang University of Science and Technology,Department of Big Data, School of Science
[2] Yanbian University,Department of Mathematics, College of Sciences
来源
International Journal of Theoretical Physics | 2021年 / 60卷
关键词
Special entangled basis with Schmidt number 2 (SEB2); Entangled state; Mutually unbiased bases;
D O I
暂无
中图分类号
学科分类号
摘要
We study mutually unbiased bases formed by special entangled basis with fixed Schmidt number 2 (MUSEB2s) in ℂ3⊗ℂ4p(p∈ℤ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{4p} (p\in \mathbb {Z}^{+})$\end{document}. Through analyzing the conditions MUSEB2s satisfy, a systematic way of the concrete construction of MUSEB2s in ℂ3⊗ℂ4p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{4p}$\end{document} is established. A general approach to constructing MUSMEB2s in ℂ3⊗ℂ4p(p∈ℤ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{4p}(p\in \mathbb {Z}^{+})$\end{document} from MUSMEB2s in ℂ3⊗ℂ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{4}$\end{document} is also presented. Detailed examples in ℂ3⊗ℂ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{4}$\end{document}, ℂ3⊗ℂ8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{8}$\end{document} and ℂ3⊗ℂ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}\otimes \mathbb {C}^{12}$\end{document} are given. Especially, by choosing special entangled basis with fixed Schmidt number 2 (SEB2) from [J. Phys. A. Math. Theor. 48245301(2015)], the limitation of 3∤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3\nmid p$\end{document} in [Quantum Inf. Process. 17:58(2018)] is successfully deleted.
引用
收藏
页码:2653 / 2661
页数:8
相关论文
共 110 条
  • [1] Ivanovi ID(1981)Geometrical descripition of quantal state determination J. Phys. A. 14 3241-333
  • [2] Durt T(2010)On mutually unbiased bases Int. J. Quantum Inf. 8 535-undefined
  • [3] Englert B-G(2010)Optimal bounds for parity-oblivious random access codes Phy. Rev. A. 81 042326-undefined
  • [4] Bengtesson I(1989)Optimal state-determination by mutually unbiased measurements Ann. Phys. 191 363-undefined
  • [5] Zyczkowski K(2011)Quantum proces reconstruction baed on mutually unbiased basis Phys. Rev. A. 83 052332-undefined
  • [6] Paw lowski M(2005)Security bound of two-basis quantum-key-distribution protocols usingqudits Phys. Rev. A. 72 032320-undefined
  • [7] Zukowski M(2013)High-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases Phy. Rev. A. 88 032305-undefined
  • [8] Wootters WK(2012)The limited role of mutually unbiased product bases in dimension 6 J. Phys. A math. Thero. 45 102001-undefined
  • [9] Fields BD(1999)Unextendible product bases and bound entanglement Phys. Rev. Lett. 82 5385-undefined
  • [10] Fernnadez-Parez A(2011)Unextendible maximally entangled bases Phys. Rev. A. 84 042306-undefined