Approximate quasi efficiency of set-valued optimization problems via weak subdifferential

被引:0
作者
Das K. [1 ]
Nahak C. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal
关键词
Approximate solution; Convex cone; Duality; Set-valued map; Weak subdifferential;
D O I
10.1007/s40324-016-0099-4
中图分类号
学科分类号
摘要
This paper deals with the approximate quasi efficient solutions of set-valued optimization problems. We establish the necessary and sufficient optimality conditions for ϵe-quasi efficiency via weak subdifferential under some approximate cone convexity assumptions. We also study duality results of Wolfe and Mond-Weir types for Geoffrion ϵe-quasi efficiency of finite dimensional set-valued optimization problems. © 2016, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:523 / 542
页数:19
相关论文
共 30 条
  • [1] Bhatia D., Gupta A., Arora P., Optimality via generalized approximate convexity and quasiefficiency, Optim. Lett., 7, 1, pp. 127-135, (2013)
  • [2] Borwein J., Multivalued convexity and optimization: a unified approach to inequality and equality constraints, Math. Progr., 13, 1, pp. 183-199, (1977)
  • [3] Chen G.Y., Jahn J., Optimality conditions for set-valued optimization problems, Math. Method Oper. Res., 48, 2, pp. 187-200, (1998)
  • [4] Das K., Nahak C., Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palermo (1952-), 63, 3, pp. 329-345, (2014)
  • [5] Das K., Nahak C., Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems, SeMA, 73, pp. 183-199, (2016)
  • [6] Dutta J., Necessary optimality conditions and saddle points for approximate optimization in Banach spaces, Top, 13, 1, pp. 127-143, (2005)
  • [7] Dutta J., Vetrivel V., On approximate minima in vector optimization, Numer. Func. Anal. Opt., 22, pp. 845-859, (2001)
  • [8] Gong X.H., Dong H.B., Wang S.Y., Optimality conditions for proper efficient solutions of vector set-valued optimization, J. Math. Anal. Appl., 284, 1, pp. 332-350, (2003)
  • [9] Gotz A., Jahn J., The lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10, 2, pp. 331-344, (2000)
  • [10] Govil M.G., Mehra A., ϵ -optimality for multiobjective programming on a banach space, Eur. J. Oper. Res., 157, 1, pp. 106-112, (2004)