An AQCQ-functional equation in matrix Banach spaces

被引:0
作者
Choonkil Park
Jung Rye Lee
Dong Yun Shin
机构
[1] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
[2] Daejin University,Department of Mathematics
[3] University of Seoul,Department of Mathematics
来源
Advances in Difference Equations | / 2013卷
关键词
operator space; fixed point; Hyers-Ulam stability; additive-quadratic-cubic-quartic functional equation;
D O I
暂无
中图分类号
学科分类号
摘要
Using the fixed point method, we prove the Hyers-Ulam stability of an additive-quadratic-cubic-quartic functional equation in matrix normed spaces.
引用
收藏
相关论文
共 55 条
  • [1] Ruan ZJ(1988)Subspaces of J. Funct. Anal 76 217-230
  • [2] Effros E(1990)-algebras Int. J. Math 1 163-187
  • [3] Ruan ZJ(1977)On approximation properties for operator spaces J. Funct. Anal 24 156-209
  • [4] Choi MD(1993)Injectivity and operator spaces Proc. Am. Math. Soc 119 579-584
  • [5] Effros E(1978)On the abstract characterization of operator spaces J. Funct. Anal 29 397-415
  • [6] Effros E(1941)Grothendieck’s theorem for non-commutative Proc. Natl. Acad. Sci. USA 27 222-224
  • [7] Ruan ZJ(1950)-algebras with an appendix on Grothendieck’s constants J. Math. Soc. Jpn 2 64-66
  • [8] Pisier G(1978)On the stability of the linear functional equation Proc. Am. Math. Soc 72 297-300
  • [9] Hyers DH(1994)On the stability of the linear transformation in Banach spaces J. Math. Anal. Appl 184 431-436
  • [10] Aoki T(1990)On the stability of the linear mapping in Banach spaces Aequ. Math 39 292-293