Global descent methods for unconstrained global optimization

被引:0
作者
Z. Y. Wu
D. Li
L. S. Zhang
机构
[1] University of Ballarat,School of Information Technology and Mathematical Sciences
[2] The Chinese University of Hong Kong,Department of Systems Engineering and Engineering Management
[3] Shanghai University,Department of Mathematics
来源
Journal of Global Optimization | 2011年 / 50卷
关键词
Global descent method; Global optimization; Local search; Modified function approach; Non-convex optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We propose in this paper novel global descent methods for unconstrained global optimization problems to attain the global optimality by carrying out a series of local minimization. More specifically, the solution framework consists of a two-phase cycle of local minimization: the first phase implements local search of the original objective function, while the second phase assures a global descent of the original objective function in the steepest descent direction of a (quasi) global descent function. The key element of global descent methods is the construction of the (quasi) global descent functions which possess prominent features in guaranteeing a global descent.
引用
收藏
页码:379 / 396
页数:17
相关论文
共 58 条
[1]  
Adjiman C.S.(1998)A global optimization method, αBB, for general twice-differentiable NLPs—II. implementation and computational results Comput. Chem. Eng. 22 1159-1179
[2]  
Androulakis I.P.(1998)A global optimization method, αBB, for general twice-differentiable NLPs—I. Theoretical advances Comput. Chem. Eng. 22 1137-1158
[3]  
Floudas C.A.(1995)αBB: a global optimization method for general constrained nonconvex problems J. Glob. Optim. 7 337-363
[4]  
Adjiman C.S.(1972)Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations IBM J. Res. Dev. 16 504-522
[5]  
Dallwig S.(1993)Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization J. Optim. Appl. 77 97-126
[6]  
Floudas C.A.(2000)Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization IEEE Trans. Syst. Man Cybern. A 30 384-390
[7]  
Neumaier A.(1990)A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory Comput. Chem. Eng. 14 1397-1417
[8]  
Androulakis I.P.(1993)A primal-relaxed dual global optimization approach J Optim. Theory Appl. 78 187-225
[9]  
Maranas C.D.(1990)A filled function method for finding a global minimizer of a function of several variables Math. Program. 46 191-204
[10]  
Floudas C.A.(1990)The globally convexized filled functions for global optimization Appl. Math. Comput. 35 131-158