Volume estimates and spectral asymptotics for a class of pseudo-differential operators

被引:0
作者
Raymond Roccaforte
机构
来源
Journal of Pseudo-Differential Operators and Applications | 2013年 / 4卷
关键词
Heat expansion; Spectral asymptotics; Szegö theorem; Pseudo-differential operators;
D O I
暂无
中图分类号
学科分类号
摘要
Two asymptotic expansions, known as the heat and Szegö expansions, are studied for a class of operators defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a compact region in Euclidean space with smooth boundary. Pseudo-differential operator methods are combined with a version of a theorem originally due to H. Weyl on the volume of certain tubular neighborhoods to obtain significant new information about the higher order terms in the expansions.
引用
收藏
页码:25 / 43
页数:18
相关论文
共 12 条
[1]  
Duistermaat JJ(1975)The spectrum of positive elliptic operators and periodic bicharacteristics Inventiones Math. 29 39-79
[2]  
Guillemin V(2010)Free fermions violate the area law for entanglement entropy Fortschritte der Physik 58 896-899
[3]  
Helling R(1971)Fourier integral operators I Acta Math. 127 79-183
[4]  
Spitzer W(1954)Toeplitz matrices, translation kernels, and a related problem in probability theory Duke Math. J. 21 501-509
[5]  
Hörmander L(1949)Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds Can. J. Math. 11 242-256
[6]  
Kac M(1970)Pseudo-differential operators Proc. Symp. Pure Math. 16 149-167
[7]  
Minakshisundaram S(1984)Asymptotic expansions of traces for certain convolution operators Trans. Amer. Math. Soc. 285 581-602
[8]  
Pleijel A(1939)On the volume of tubes Amer. J. Math. 61 461-472
[9]  
Nirenberg L(2008)Asymptotics of a class of operator determinants with application to the cylindrical Toda equations Contemp. Math. 458 31-53
[10]  
Roccaforte R(undefined)undefined undefined undefined undefined-undefined