Besov Estimates for Weak Solutions of the Parabolic p-Laplacian Equations

被引:0
作者
Rumeng Ma
Fengping Yao
机构
[1] Shanghai University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Besov spaces; Regularity; -Laplacian; Parabolic; Weak solutions; 35B65; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain the local regularity estimates in Besov spaces of weak solutions for the following parabolic p-Laplacian equations: ut-divaDu,x,t=divF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{t}-\text {div} ~\! a \left( Du, x,t \right) =\text {div}~ {\mathbf {F}} \end{aligned}$$\end{document}under some proper assumptions on the functions a and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {F}}$$\end{document}. Moreover, we would like to point out that our results improve the known results for such equations.
引用
收藏
页码:3839 / 3859
页数:20
相关论文
共 71 条
  • [1] Acerbi E(2007)Gradient estimates for a class of parabolic systems Duke Math. J. 136 285-320
  • [2] Mingione G(2017)Fractional differentiability for solutions of nonlinear elliptic equations Potential Anal. 46 403-430
  • [3] Baisón AL(2020)Higher order Calderón-Zygmund estimates for the J. Differ Equ 268 590-635
  • [4] Clop A(2013)-Laplace equation J. Differ. Equ. 255 2927-2951
  • [5] Giova R(2017)Lorentz estimates for degenerate and singular evolutionary systems Ann. Inst. H. Poincaré Anal. Non Linéaire 34 593-624
  • [6] Orobitg J(2014)The Cauchy-Dirichlet problem for a general class of parabolic equations Calc. Var. Partial Differ. Equ. 51 555-596
  • [7] Passarelli di Napoli A(2013)Global Calderón-Zygmund theory for nonlinear parabolic systems Mem. Amer. Math. Soc. 221 143-160
  • [8] Balci AKh(2011)The regularity of general parabolic systems with degenerate diffusion J. Reine Angew. Math. 650 107-4326
  • [9] Diening L(2017)Degenerate problems with irregular obstacles Calc. Var. Partial Differ. Equ. 56 47-4121
  • [10] Weimar M(2013)Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains J. Differ. Equ. 254 4290-234