On the Cost of Fixed Partial Match Queries in K-d Trees

被引:0
|
作者
Amalia Duch
Gustavo Lau
Conrado Martínez
机构
[1] Universitat Politècnica de Catalunya,Department of Computer Science
来源
Algorithmica | 2016年 / 75卷
关键词
Multidimensional search; Partial match search; K-dimensional search trees; Analysis of algorithms; Multidimensional data structures;
D O I
暂无
中图分类号
学科分类号
摘要
Partial match queries constitute the most basic type of associative queries in multidimensional data structures such as K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-d trees or quadtrees. Given a query q=(q0,…,qK-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q}=(q_0,\ldots ,q_{K-1})$$\end{document} where s of the coordinates are specified and K-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K-s$$\end{document} are left unspecified (qi=∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_i=*$$\end{document}), a partial match search returns the subset of data points x=(x0,…,xK-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}=(x_0,\ldots ,x_{K-1})$$\end{document} in the data structure that match the given query, that is, the data points such that xi=qi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i=q_i$$\end{document} whenever qi≠∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_i\not =*$$\end{document}. There exists a wealth of results about the cost of partial match searches in many different multidimensional data structures, but most of these results deal with random queries. Only recently a few papers have begun to investigate the cost of partial match queries with a fixed query q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q}$$\end{document}. This paper represents a new contribution in this direction, giving a detailed asymptotic estimate of the expected cost Pn,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{n},\mathbf {q}}$$\end{document} for a given fixed query q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q}$$\end{document}. From previous results on the cost of partial matches with a fixed query and the ones presented here, a deeper understanding is emerging, uncovering the following functional shape for Pn,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{n},\mathbf {q}}$$\end{document}Pn,q=ν·∏i:qiis specifiedqi(1-qi)α/2·nα+l.o.t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_{{n},\mathbf {q}} = \nu \cdot \left( \prod _{i:q_i\text { is specified}}\, q_i(1-q_i)\right) ^{\alpha /2}\cdot n^\alpha + \text {l.o.t.} \end{aligned}$$\end{document}(l.o.t. lower order terms, throughout this work) in many multidimensional data structures, which differ only in the exponent α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and the constant ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}, both dependent on s and K, and, for some data structures, on the whole pattern of specified and unspecified coordinates in q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {q}$$\end{document} as well. Although it is tempting to conjecture that this functional shape is “universal”, we have shown experimentally that it seems not to be true for a variant of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-d trees called squarish K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-d trees.
引用
收藏
页码:684 / 723
页数:39
相关论文
共 50 条
  • [1] On the Cost of Fixed Partial Match Queries in K-d Trees
    Duch, Amalia
    Lau, Gustavo
    Martinez, Conrado
    ALGORITHMICA, 2016, 75 (04) : 684 - 723
  • [2] Partial match queries in random k-d trees
    Chern, HH
    Hwang, HK
    SIAM JOURNAL ON COMPUTING, 2006, 35 (06) : 1440 - 1466
  • [3] Asymptotic distributions for partial match queries in K-d trees
    Neininger, R
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (3-4) : 403 - 427
  • [4] On the Expected Cost of Partial Match Queries in Random Quad-K-d Trees
    Duch A.
    Martínez C.
    La Matematica, 2024, 3 (1): : 385 - 416
  • [5] On the average cost of insertions on random relaxed K-d trees
    Duch, Amalia
    Martinez, Comado
    PROCEEDINGS OF THE NINTH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS AND THE FOURTH WORKSHOP ON ANALYTIC ALGORITHMICS AND COMBINATORICS, 2007, : 194 - 200
  • [6] Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs
    Gieseke, Fabian
    Heinermann, Justin
    Oancea, Cosmin
    Igel, Christian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [7] DIVIDED K-D TREES
    VANKREVELD, MJ
    OVERMARS, MH
    ALGORITHMICA, 1991, 6 (06) : 840 - 858
  • [8] Squarish k-d trees
    Devroye, L
    Jabbour, J
    Zamora-Cura, C
    SIAM JOURNAL ON COMPUTING, 2000, 30 (05) : 1678 - 1700
  • [9] Partial match queries in relaxed multidimensional search trees
    Martínez, C
    Panholzer, A
    Prodinger, H
    ALGORITHMICA, 2001, 29 (1-2) : 181 - 204
  • [10] Partial match queries in relaxed multidimensional search trees
    C. Martínez
    A. Panholzer
    H. Prodinger
    Algorithmica, 2001, 29 : 181 - 204