The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra

被引:0
作者
Hendrik De Bie
Hadewijch De Clercq
Wouter van de Vijver
机构
[1] Ghent University,Department of Electronics and Information Systems, Faculty of Engineering and Architecture
来源
Communications in Mathematical Physics | 2020年 / 374卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The q-deformed Bannai-Ito algebra was recently constructed in the threefold tensor product of the quantum superalgebra ospq(1|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {osp}_q(1\vert 2)$$\end{document}. It turned out to be isomorphic to the Askey-Wilson algebra. In the present paper these results will be extended to higher rank. The rank n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2$$\end{document}q-Bannai-Ito algebra Anq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_n^q$$\end{document}, which by the established isomorphism also yields a higher rank version of the Askey-Wilson algebra, is constructed in the n-fold tensor product of ospq(1|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {osp}_q(1\vert 2)$$\end{document}. An explicit realization in terms of q-shift operators and reflections is proposed, which will be called the Z2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2^n$$\end{document}q-Dirac–Dunkl model. The algebra Anq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_n^q$$\end{document} is shown to arise as the symmetry algebra of the constructed Z2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2^n$$\end{document}q-Dirac–Dunkl operator and to act irreducibly on modules of its polynomial null-solutions. An explicit basis for these modules is obtained using a q-deformed CK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CK}$$\end{document}-extension and Fischer decomposition.
引用
收藏
页码:277 / 316
页数:39
相关论文
共 62 条
[1]  
Baseilhac P(2005)An integrable structure related with tridiagonal algebras Nuclear Phys. B 705 605-619
[2]  
Baseilhac P(2018)An embedding of the Bannai-Ito algebra in Lett. Math. Phys. 108 1623-1634
[3]  
Genest VX(2005) and Nuclear Phys. B 720 325-347
[4]  
Vinet L(2018) polynomials J. Math. Phys. 59 011704-299
[5]  
Zhedanov A(2013)A new (in)finite dimensional algebra for quantum integrable models Electron. J. Linear Algebra 26 258-464
[6]  
Baseilhac P(2016)A bispectral Commun. Math. Phys. 344 447-414
[7]  
Koizumi K(2016)-hypergeometric basis for a class of quantum integrable models Adv. Math. 303 390-183
[8]  
Baseilhac P(2018)Totally bipartite/abipartite Leonard pairs and Leonard triples of Bannai/Ito type J. Phys. A Math. Theor. 51 025203-405
[9]  
Martin X(2017)A Dirac-Dunkl equation on J. Phys. A Math. Theor. 50 195202-123
[10]  
Brown GMF(1989) and the Bannai-Ito algebra Trans. Am. Math. Soc. 311 167-259