Fractional derivatives of the generalized Mittag-Leffler functions

被引:0
|
作者
Denghao Pang
Wei Jiang
Azmat U. K. Niazi
机构
[1] Anhui University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2018卷
关键词
Mittag-Leffler function; Riemann–Liouville derivative; Caputo derivative; 33E12; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive the compositions of the fractional derivatives with the Shukla function, a four-parameter Mittag-Leffler function. We investigate and compare the difference between the Riemann–Liouville and Caputo derivatives of the generalized Mittag-Leffler functions and obtain the reason causing the difference and expand the fractional derivatives of the generalized Mittag-Leffler functions. Two illustrative examples and the related numerical results are provided to demonstrate the validity.
引用
收藏
相关论文
共 50 条
  • [1] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] On fractional derivatives with generalized Mittag-Leffler kernels
    Abdeljawad, Thabet
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] On fractional derivatives with generalized Mittag-Leffler kernels
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2018
  • [4] Fractional integrals and derivatives of Mittag-Leffler type functions
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (04): : 22 - 26
  • [5] UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Suthar, Daya Lal
    Purohit, Sunil Dutt
    JOURNAL OF SCIENCE AND ARTS, 2014, (02): : 117 - 124
  • [6] On the generalized Mittag-Leffler type functions
    Gorenflo, R
    Kilbas, AA
    Rogosin, SV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 215 - 224
  • [7] On the generalized fractional integrals of the generalized Mittag-Leffler function
    Ahmed, Shakeel
    SPRINGERPLUS, 2014, 3
  • [8] Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus
    Kiryakova, VS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) : 241 - 259
  • [9] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [10] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 506 - 520