Mach and Reynolds number effects on transonic buffet on the XRF-1 transport aircraft wing at flight Reynolds number

被引:0
作者
Andreas Waldmann
Maximilian C. Ehrle
Johannes Kleinert
Daisuke Yorita
Thorsten Lutz
机构
[1] University of Stuttgart,Institute of Aerodynamics and Gas Dynamics
[2] German Aerospace Center (DLR),Institute of Aerodynamics and Flow Technology
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This work provides an overview of aerodynamic data acquired in the European Transonic Windtunnel using an XRF-1 transport aircraft configuration both at cruise conditions and at the edges of the flight envelope. The goals and design of the wind tunnel test were described, highlighting the use of the cryogenic wind tunnel’s capability to isolate the effects of M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\infty }$$\end{document}, Re∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{\infty }$$\end{document} and the dynamic pressure q/E. The resulting dataset includes an aerodynamic baseline characterization of the full span model with vertical and horizontal tailplanes and without engine nacelles. The effects of different inflow conditions were studied using data from continuous polars, evaluating the changes in aeroelastic deformation which are proportional to q/E and the influence of M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\infty }$$\end{document} and Re∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{\infty }$$\end{document} on the shock position. Off-design data was analyzed at the lowest and highest measured Mach numbers of 0.84 and 0.90, respectively. Wing lower surface flow and underside shock motion was analyzed at negative angles of attack using cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{c}_{\text{p}}}$$\end{document} distribution and unsteady pressure transducer fluctuation data, identifying significant upstream displacement of the shock close to the leading edge. Wing upper-side flow and the shock motion near buffet onset and beyond was analyzed using unsteady pressure data from point transducers and unsteady pressure-sensitive paint (PSP) measurements. Buffet occurs at lower angles of attack at high Mach number, and without clearly defined lift break. Spectral contents at the acquired data points in the buffet range suggest broadband fluctuations at Strouhal numbers between 0.2 and 0.6, which is consistent with recent literature. The spanwise shock propagation velocities were determined independently via analysis of unsteady PSP and pressure transducers to be in the range between us/u∞=0.24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\text{s}} / u_{\infty } = 0.24$$\end{document} and 0.32, which is similarly in line with published datasets using other swept wing aircraft models.
引用
收藏
相关论文
共 45 条
  • [1] Abbas-Bayoumi A(2011)An industrial view on numerical simulation for aircraft aerodynamic design J Math Ind 1 10-369
  • [2] Becker K(2009)Origin of transonic buffet on aerofoils J Fluid Mech 628 357-1036
  • [3] Crouch JD(2016)Experimental study of transonic buffet phenomenon on a 3D swept wing Phys Fluids 28 116-84
  • [4] Garbaruk A(2020)Simulation of transonic buffet with an automated zonal des approach CEAS Aeronaut J 11 1025-463
  • [5] Magidov D(2017)A review of recent developments in the understanding of transonic shock buffet Prog Aerosp Sci 92 39-1994
  • [6] Dandois J(2013)On the interaction of shock waves and sound waves in transonic buffet flow Phys Fluids 25 025-152
  • [7] Ehrle MC(2014)Numerical study of shock buffet on three-dimensional wings AIAA J 53 449-514
  • [8] Waldmann A(2009)Experimental study of shock oscillation over a transonic supercritical profile AIAA J 47 1985-18
  • [9] Lutz T(1992)Wind-tunnel studies of f/a-18 tail buffet J Aircr 29 146-396
  • [10] Giannelis NF(2016)Time-resolved prediction and measurement of the wake past the CRM at high Reynolds number stall conditions J Aircr 53 501-464