Characterization of finite p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-groups by their Schur multiplier

被引:0
作者
Sumana Hatui
机构
[1] Harish-Chandra Research Institute,School of Mathematics
[2] Homi Bhabha National Institute,undefined
关键词
Schur multiplier; finite ; -groups; 20D15; 20E34;
D O I
10.1007/s12044-018-0419-y
中图分类号
学科分类号
摘要
Let G be a finite p-group of order pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} and M(G) be its Schur multiplier. It is a well known result by Green that |M(G)|=p12n(n-1)-t(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|M(G)|= p^{\frac{1}{2}n(n-1)-t(G)}$$\end{document} for some t(G)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(G) \ge 0$$\end{document}. In this article, we classify non-abelian p-groups G of order pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} for t(G)=logp(|G|)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(G)=\log _p(|G|)+1$$\end{document}.
引用
收藏
相关论文
共 16 条
[1]  
Berkovich Ya G(1991)On the order of the commutator subgroups and the Schur multiplier of a finite p-group J. Algebra 34 613-637
[2]  
Blackburn N(1979)Schur multipliers of J. Reine Angew. Math. 309 100-113
[3]  
Evens L(1998)-groups Proc. Amer. Math. Soc. 126 2513-2523
[4]  
Ellis G(1999)A Bound for the Derived and Frattini Subgroups of a Prime-Power Group Bull. Austral. Math. Soc. 60 191-196
[5]  
Ellis G(1999)A bound on the Schur multiplier of a prime-power group Comm. Algebra 27 4173-4177
[6]  
Wiegold J(1956)On the Schur multiplier of Proc. R. Soc. A 237 574-581
[7]  
Ellis G(1980)-groups Math. Comp. 34 613-637
[8]  
Green JA(1973)On the number of automorphisms of a finite group Proc. Amer. Math. Soc. 39 450-456
[9]  
James R(2001)The groups of order Comm. Korean Math. Soc. 16 205-210
[10]  
Jones MR(2012) ( Ricerche di Matematica 61 341-346