A self-normalized law of the iterated logarithm for the geometrically weighted random series

被引:0
作者
Ke Ang Fu
Wei Huang
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
[2] Zhejiang University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2016年 / 32卷
关键词
Domain of attraction of the normal law; geometrically weighted series; law of the iterated logarithm; self-normalization; slowly varying; 60F15; 60G50;
D O I
暂无
中图分类号
学科分类号
摘要
Let {X,Xn; n ≥ 0} be a sequence of independent and identically distributed random variables with EX = 0, and assume that EX2I(|X| ≤ x) is slowly varying as x→∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{n = 0}^\infty {{\beta ^n}{X_n}\left( {0 < \beta < 1} \right)} $$\end{document} is obtained, under some minimal conditions.
引用
收藏
页码:384 / 392
页数:8
相关论文
共 25 条
  • [1] Bovier A.(1993)A law of the iterated logarithm for random geometric series. Ann. Probab. 21 168-184
  • [2] Picco P.(2013)A strong approximation of self-normalized sums. Sci. China Math. 56 149-160
  • [3] Csörgo M.(2003)Donsker’s theorem for self-normalized partial sums processes. Ann. Probab. 31 1228-1240
  • [4] Hu Z. S.(1997)Gaussian approximation of local empirical processes indexed by functions. Probab. Theory Relat. Fields 107 283-311
  • [5] Csörgo M.(2013)A nonclassical LIL for geometrically weighted series in Banach space. Acta Math. Appl. Sin. Engl. Ser. 29 1413-1420
  • [6] Szyszkowicz B.(1989)Self-normalized laws of the iterated logarithm. Ann. Probab. 17 1571-1601
  • [7] Wang Q. Y.(2003)A law of the iterated logarithm for geometrically weighted series of negatively associated random variables. Statist. Probab. Lett. 63 133-143
  • [8] Einmahl U.(2012)Self-normalized moderate deviations for independent random variables. Sci. China Math. 55 2297-2315
  • [9] Mason D. M.(1998)Compact laws of the iterated logarithm for B-valued random variables with two-dimensional indices. J. Theor. Probab. 11 443-459
  • [10] Fu K. A.(1994)A law of iterated logarithm for geometrically weighted martingale difference sequence. J. Theor. Probab. 7 375-415