Neighbor Sum Distinguishing Total Choosability of Planar Graphs with Maximum Degree at Least 10

被引:0
作者
Dong-han Zhang
You Lu
Sheng-gui Zhang
Li Zhang
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Shangluo University,School of Mathematics and Computer Application
来源
Acta Mathematicae Applicatae Sinica, English Series | 2024年 / 40卷
关键词
planar graphs; neighbor sum distinguishing total choosibility; combinatorial nullstellensatz; discharging method; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A neighbor sum distinguishing (NSD) total coloring ϕ of G is a proper total coloring of G such that ∑z∈EG(u)∪{u}ϕ(z)≠∑z∈EG(v)∪{v}ϕ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{z \in {E_G}(u) \cup \{u\}} {\phi (z) \ne} \sum\limits_{z \in {E_G}(v) \cup \{v\}} {\phi (z)} $$\end{document} for each edge uv ∈ E(G), where EG(u) is the set of edges incident with a vertex u. In 2015, Pilśniak and Woźniak conjectured that every graph with maximum degree Δ has an NSD total (Δ + 3)-coloring. Recently, Yang et al. proved that the conjecture holds for planar graphs with Δ ≥ 10, and Qu et al. proved that the list version of the conjecture also holds for planar graphs with Δ ≥ 13. In this paper, we improve their results and prove that the list version of the conjecture holds for planar graphs with Δ ≥ 10.
引用
收藏
页码:211 / 224
页数:13
相关论文
共 87 条
[1]  
Alon N(1999)Combinatorial nullstellensatz Combin. Probab. Comput. 8 7-29
[2]  
Cheng XH(2015)Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ Discrete Appl. Math. 191 34-41
[3]  
Huang DJ(2014)Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree Acta Math. Sin. (Engl. Ser.) 30 703-709
[4]  
Wang GH(2014)Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz Sci. China Math. 57 1875-1882
[5]  
Wu JL(2017)Neighbor sum (set) distinguishing total choosability via the Combinatorial Nullstellensatz Graphs Comb. 33 885-900
[6]  
Dong AJ(2018)Neighbor sum distinguishing total coloring of graphs with bounded treewidth J. Comb. Optim. 36 23-34
[7]  
Wang GH(2013)Neighbor sum distinguishing total coloring of Front. Math. China 8 1351-1366
[8]  
Ding LH(2018)-minor-free graphs Discrete Appl. Math. 237 109-115
[9]  
Wang GH(2018)Neighbor sum distinguishing total coloring and list neighbor sum distinguishing total coloring J. Comb. Optim. 35 778-793
[10]  
Yan GY(2015)Neighbor sum distinguishing list total coloring of subcubic graphs Graphs Comb. 31 771-782