Different types of cubic ideals in BCI-algebras based on fuzzy points

被引:0
作者
Chiranjibe Jana
Tapan Senapati
Madhumangal Pal
Arsham Borumand Saeid
机构
[1] Vidyasagar University,Department of Applied Mathematics with Oceanology and Computer Programming
[2] Southwest University,School of Mathematics and Statistics
[3] Shahid Bahonar University of Kerman,Department of Pure Mathematics, Faculty of Mathematics and Computer
来源
Afrika Matematika | 2020年 / 31卷
关键词
-algebra; Cubic subalgebra; Cubic ideal; (; )-cubic ; -ideal; (; )-cubic; (; )-cubic ; -ideal; 06F35; 03G25; 08A72;
D O I
暂无
中图分类号
学科分类号
摘要
The notions of (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic p- (a- and q-) ideals of BCI-algebras are introduced and some related properties are investigated. Several characterization for these generalized (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic ideals are defined and relationship between (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic p-ideals, (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic q-deals and (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic a-ideals of BCI-algebras are discussed.
引用
收藏
页码:367 / 381
页数:14
相关论文
共 103 条
[21]  
Pal M(2017)-algebras based on J. Comput. Anal. Appl. 23 802-304
[22]  
Jana C(2014)-valued logic and its computational study Ann. Fuzzy Math. Inform. 8 291-353
[23]  
Pal M(1965)-bipolar fuzzy Inform. Control. 8 338-599
[24]  
Jana C(1980)-algebras J. Math. Anal. Appl. 76 571-241
[25]  
Pal M(1992)On Fuzzy Sets Syst. 51 235-368
[26]  
Saied AB(1996)-fuzzy soft Fuzzy Sets Syst. 80 359-70
[27]  
Jana C(2008)-algebras Iran. J. Fuzzy Syst. 5 63-819
[28]  
Pal M(2012)Applications of new soft intersection set on groups Neural Comput. Appl. 21 813-3754
[29]  
Jana C(2008)On Inform. Sci. 178 3738-1015
[30]  
Pal M(2011)-union-soft sets in Comput. Math. Appl. 61 1005-98