Different types of cubic ideals in BCI-algebras based on fuzzy points

被引:0
作者
Chiranjibe Jana
Tapan Senapati
Madhumangal Pal
Arsham Borumand Saeid
机构
[1] Vidyasagar University,Department of Applied Mathematics with Oceanology and Computer Programming
[2] Southwest University,School of Mathematics and Statistics
[3] Shahid Bahonar University of Kerman,Department of Pure Mathematics, Faculty of Mathematics and Computer
来源
Afrika Matematika | 2020年 / 31卷
关键词
-algebra; Cubic subalgebra; Cubic ideal; (; )-cubic ; -ideal; (; )-cubic; (; )-cubic ; -ideal; 06F35; 03G25; 08A72;
D O I
暂无
中图分类号
学科分类号
摘要
The notions of (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic p- (a- and q-) ideals of BCI-algebras are introduced and some related properties are investigated. Several characterization for these generalized (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic ideals are defined and relationship between (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic p-ideals, (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic q-deals and (∈,∈∨q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,\in \vee q)$$\end{document}-cubic a-ideals of BCI-algebras are discussed.
引用
收藏
页码:367 / 381
页数:14
相关论文
共 103 条
[1]  
Imai Y(1966)On axiom system of propositional calculi. XIV Proc. Jpn. Acad. 42 19-22
[2]  
Iseki K(1966)An algebra related with a propositional calculus Proc. Jpn. Acad. 42 26-29
[3]  
Iseki K(2015)On intuitionistic fuzzy Fuzzy Inf. Eng. 7 195-209
[4]  
Jana C(2015)-subalgebras of J. Fuzzy Math. 23 195-209
[5]  
Senapati T(2015)-algebras Ann. Pure Appl. Math. 10 105-115
[6]  
Bhowmik M(2017)Atanassov’s intutionistic J. Discrete Math. Sci. Cryptogr. 20 1583-1595
[7]  
Pal M(2016)-fuzzy J. Int. Fuzzy Syst. 31 613-621
[8]  
Jana C(2017)-subalgebras of Int. J. Intell. Syst. Technol. Appl. 16 269-288
[9]  
Pal M(2017)-algebras Fuzzy Inf. Eng. 9 455-478
[10]  
Senapati T(2017)Cubic Mo. J. Math. Sci. 29 139-160