Generalized complex structures and Lie brackets

被引:0
作者
Marius Crainic
机构
[1] Utrecht University,Department of Mathematics
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2011年 / 42卷
关键词
generalized complex geometry; Poisson geometry; Lie groupoids; 53D18; 53D17; 58H05; 22A22;
D O I
暂无
中图分类号
学科分类号
摘要
We remark that the equations underlying the notion of generalized complex structure have simple geometric meaning when passing to Lie algebroids/groupoids.
引用
收藏
页码:559 / 578
页数:19
相关论文
共 22 条
[1]  
Abouzaid M.(2006)Local structure of generalized complex manifolds J. Symplectic Geom. 4 43-62
[2]  
Boyarchenko M.(2007)Monge-Ampère equations and generalized complex geometry — the twodimensional case J. Geom. Phys. 57 841-853
[3]  
Anos B.(2004)Integration of twisted Dirac brackets Duke Math. J. 123 549-607
[4]  
Bursztyn H.(2003)Gauge equivalence of Dirac structures and symplectic groupoids Ann. Inst. Fourier (Grenoble) 53 309-337
[5]  
Crainic M.(1990)Dirac manifolds Trans. Amer. Math. Soc. 319 631-661
[6]  
Weinstein A.(2003)Integrability of Lie brackets Ann. of Math. 157 575-620
[7]  
Zhu C.(2004)Integrability of Poisson brackets J. of Differential Geometry 66 71-137
[8]  
Bursztyn H.(2003)Generalized Calabi-Yau manifolds Q.J. Math. 54 281-308
[9]  
Radko O.(1997)Manin triples for Lie bialgebroids J. Differential Geom. 45 547-574
[10]  
Courant T.(1994)Lie bialgebroids and Poisson groupoids Duke Math. J. 73 415-452