Equivariant group presentations and the second homology group of the Torelli group

被引:0
作者
Martin Kassabov
Andrew Putman
机构
[1] Cornell University,Department of Mathematics
[2] University of Notre Dame,Department of Mathematics
来源
Mathematische Annalen | 2020年 / 376卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as a Z[Sp2g(Z)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}[{{\,\mathrm{Sp}\,}}_{2g}(\mathbb {Z})]$$\end{document}-module.
引用
收藏
页码:227 / 241
页数:14
相关论文
共 43 条
[1]  
Bartholdi L(2003)Endomorphic presentations of branch groups J. Algebra 268 419-443
[2]  
Birman JS(1971)On Siegel’s modular group Math. Ann. 191 59-68
[3]  
Boldsen SK(2012)Towards representation stability for the second homology of the Torelli group Geom. Topol. 16 1725-1765
[4]  
Hauge Dollerup M(2007)The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group Math. Ann. 338 33-53
[5]  
Brendle TE(2013)Representation theory and homological stability Adv. Math. 245 250-314
[6]  
Farb B(2015)Generating the Johnson filtration Geom. Topol. 19 2217-2255
[7]  
Church T(2017)On the second homology group of the Torelli subgroup of Geom. Topol. 21 2851-2896
[8]  
Farb B(2018)On finiteness properties of the Johnson filtrations Duke Math. J. 167 1713-1759
[9]  
Church T(2008)Presentations of finite simple groups: a quantitative approach J. Am. Math. Soc. 21 711-774
[10]  
Putman A(1997)Infinitesimal presentations of the Torelli groups J. Am. Math. Soc. 10 597-651