Interior-Point Methods for Nonconvex Nonlinear Programming: Filter Methods and Merit Functions

被引:0
|
作者
Hande Y. Benson
Robert J. Vanderbei
David F. Shanno
机构
[1] Princeton University,Operations Research and Financial Engineering
[2] Rutgers University,undefined
来源
Computational Optimization and Applications | 2002年 / 23卷
关键词
interior-point methods; nonconvex optimization; nonlinear programming; filter methods;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Fletcher and Leyffer proposed using filter methods instead of a merit function to control steplengths in a sequential quadratic programming algorithm. In this paper, we analyze possible ways to implement a filter-based approach in an interior-point algorithm. Extensive numerical testing shows that such an approach is more efficient than using a merit function alone.
引用
收藏
页码:257 / 272
页数:15
相关论文
共 50 条