Vector variational principle

被引:0
作者
Ewa M. Bednarczuk
Dariusz Zagrodny
机构
[1] Cardinal Stefan Wyszyński University,Systems Research Institute
[2] Polish Academy of Sciences,undefined
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
58E30; 58E17; 65K10; Vector variational principle; Countably orderable sets; Németh approximate solutions; Ekeland’s variational principle;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an Ekeland’s type vector variational principle for monotonically semicontinuous mappings with perturbations given by a convex bounded subset of directions multiplied by the distance function. This generalizes the existing results where directions of perturbations are singletons.
引用
收藏
页码:577 / 586
页数:9
相关论文
共 33 条
  • [1] Bao T.Q.(2007)Variational principles for set-valued mappings with applications to multiobjective optimization Control Cybernet. 36 531-562
  • [2] Mordukhovich B.S.(2007)The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors SIAM J. Optim. 18 907-913
  • [3] Bednarczuk E.M.(1996)A complement to Ekeland’s variational principle in Banach spaces Bull. Pol. Acad. Sci. Math. 44 29-33
  • [4] Przybyła M.(1974)On the variational principle J. Math. Anal. Appl. 47 324-353
  • [5] Cammaroto F.(1979)Nonconvex minimization problems Bull. Amer. Math. Soc. 1 443-474
  • [6] Chinni A.(1996)The variational principle and fixed points theorems in certain topological spaces J. Math. Anal. Appl. 208 389-412
  • [7] Ekeland I.(2001)Variational principles in partially ordered Banach spaces J. Nonlinear Convex Anal. 2 167-174
  • [8] Ekeland I.(2003)Vector-valued variational principles Nonlinear Anal. 52 197-218
  • [9] Fang J.X.(1994)Weierstrass theorem for monotonically semicontinuous functions Optimization 29 199-203
  • [10] Finet C.(1991)Existence of maximal points with respect to ordered bipreference relations J. Optim. Theory Appl. 70 355-364