Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

被引:0
作者
Dominic W. Berry
Graeme Ahokas
Richard Cleve
Barry C. Sanders
机构
[1] The University of Queensland,Department of Physics
[2] University of Calgary,Institute for Quantum Information Science
[3] University of Calgary,Department of Computer Science
[4] University of Waterloo,School of Computer Science
[5] University of Waterloo,Institute for Quantum Computing
[6] Macquarie University,Centre for Quantum Computer Technology
来源
Communications in Mathematical Physics | 2007年 / 270卷
关键词
Quantum Algorithm; Quantum Walk; Trace Distance; Nonzero Matrix Element; Tensor Product Structure;
D O I
暂无
中图分类号
学科分类号
摘要
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integer k such that the simulation requires O((log*n)t1+1/2k) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
引用
收藏
页码:359 / 371
页数:12
相关论文
共 28 条
  • [1] Grover L.(1997)Quantum mechanics helps in searching for a needle in a haystack Phys. Rev. Lett. 79 325-328
  • [2] Kempe J.(2006)The complexity of the local Hamiltonian problem SIAM J. Computing 35 1070-1097
  • [3] Kitaev A.(1982)Simulating physics with computers Int. J. Theoret. Phys. 21 467-488
  • [4] Regev O.(1996)Universal quantum simulators Science 273 1073-1078
  • [5] Feynman R.P.(2002)An example of the difference between quantum and classical random walks J. Quant. Inf. Proc. 1 35-43
  • [6] Lloyd S.(2003)Quantum random-walk search algorithm Phys. Rev. A 67 052307-323
  • [7] Childs A.(2004)Spatial search by quantum walk Phys. Rev. A 70 022314-407
  • [8] Farhi E.(1990)Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations Phys. Lett. A 146 319-53
  • [9] Gutmann S.(1991)General theory of fractal path integrals with applications to many-body theories and statistical physics J. Math. Phys. 32 400-201
  • [10] Shenvi N.(1986)Deterministic coin tossing with applications to optimal parallel list ranking Inform. and Control 70 32-797