Nonparametric Estimation of Regression Functions in Point Process Models

被引:0
作者
Sebastian Döhler
Ludger Rüschendorf
机构
[1] University of Freiburg,Institute for Mathematical Stochastics
关键词
nonparametric estimation; regression functions; point process models; neural nets; sieve classes;
D O I
10.1023/A:1025854227833
中图分类号
学科分类号
摘要
We prove that the empirical L2-risk minimizing estimator over some general type of sieve classes is universally, strongly consistent for the regression function in a class of point process models of Poissonian type (random sampling processes). The universal consistency result needs weak assumptions on the underlying distributions and regression functions. It applies in particular to neural net classes and to radial basis function nets. For the estimation of the intensity functions of a Poisson process a similar technique yields consistency of the sieved maximum likelihood estimator for some general sieve classes.
引用
收藏
页码:291 / 307
页数:16
相关论文
共 18 条
  • [1] Devroye L.(1994)On the strong universal consistency of nearest neighbor regression function estimates Ann. Statist. 22 1371-1385
  • [2] Györfi L.(1991)Approximation capabilities of multilayer feedforward networks Neural Networks 4 251-257
  • [3] Krzyzak A.(1997)On the universal consistency of a least squares spline regression estimator Math. Meth. Statist. 6 349-364
  • [4] Lugosi G.(1998)Radial basis function networks and complexity regularization in function learning Neural Networks 9 247-256
  • [5] Hornik K.(1996)Nonparametric estimation and classification using radial basis function nets and empirical risk minimization IEEE Trans. Neural Networks 7 475-487
  • [6] Kohler M.(1999)A note on empirical process methods in the theory of point processes Scand. J. Statist. 26 533-537
  • [7] Krzyzak A.(1995)Nonparametric estimation IEEE Trans. Inform. Theory 41 677-687
  • [8] Linder T.(1982) empirical risk minimization Scand. J. Stat. Theory Appl. 9 65-78
  • [9] Krzyzak A.(1989)Empirical choice of histograms and kernel density estimators Stoch. Proc. Appl. 32 129-140
  • [10] Linder T.(1977)Inference for random sampling processes Ann. Statist. 5 595-645