Application of G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{G'}{G^2}$$\end{document}-Expansion Method for Solving Fractional Differential Equations

被引:0
作者
Nematollah Kadkhoda
机构
[1] Bozorgmehr University of Qaenat,Department of Mathematics, Faculty of Basic Sciences
关键词
Fractional ; -expansion method; Time fractional Bogoyavlenskii equation; Space-time fractional Kundu–Eckhaus equation; Nonlinear partial differential equations; Modified Riemann–Liouville derivative;
D O I
10.1007/s40819-017-0344-2
中图分类号
学科分类号
摘要
In this paper, we apply a fractional G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{G'}{G^2}$$\end{document}-expansion method to look exact solutions of nonlinear fractional differential equations. A fractional complex transformation is used to convert a nonlinear FDE with Jumarie modified Riemann–Liouville derivative into its ordinary differential equation. This method is applied to two nonlinear FDEs namely, the time fractional Bogoyavlenskii equation and the space-time fractional Kundu–Eckhaus equation. It is shown that the considered method is very powerful and efficient to solve many nonlinear FDEs.
引用
收藏
页码:1415 / 1424
页数:9
相关论文
共 28 条
[1]  
Daftardar-Gejji V(2007)Solving a multi-order fractional differential equation using Adomian decomposition Appl. Math. Comput. 189 541-548
[2]  
Jafari H(2004)A generalization of the sine-Gordon equation (2 + 1)-dimensions J. Nonlinear Math. Phys. 11 168-179
[3]  
Estevez PG(2016)Kauser, application of the Int. J. Math. Comput. 27 44-56
[4]  
Prada J(2015)-expansion method for solving nonlinear TRLWand Gardner equations Nonlinear Dyn. 11 1482-1376
[5]  
Hafez MG(2013)Fractional Lie group method of the time-fractional Boussinesq equation Eur. J. Phys. 51 1367-1450
[6]  
Ali MKH(2006)Centre Comput. Math. Appl. 23 1444-6
[7]  
Chowdury MA(2010)Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results Appl. Math. Lett. 4 1-402
[8]  
Jafari H(2017)Cauchys integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order Int. J. Adv. Appl. Math. Mech. 205 396-9518
[9]  
Kadkhoda N(2008)Application of fractional sub-equation method to the space-time fractional differential equations Appl. Math. Comput. 31 9505-693
[10]  
Baleanu D(1998)Extended simplest equation method for nonlinear differential equations J. Phys. A 395 684-5551