Some approximation results on Bernstein-Schurer operators defined by (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-integers

被引:0
|
作者
Mohammad Mursaleen
Md Nasiruzzaman
Ashirbayev Nurgali
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
[3] M. Auezov South Kazakhstan State University,Science
关键词
-integers; -integers; Bernstein operator; -Bernstein operator; -Bernstein-Schurer operator; -Bernstein-Schurer operator; modulus of continuity; 41A10; 41A25; 41A36;
D O I
10.1186/s13660-015-0767-4
中图分类号
学科分类号
摘要
Recently, Mursaleen et al. (On (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-analogue of Bernstein operators, arXiv:1503.07404) introduced and studied the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-analog of Bernstein operators by using the idea of (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-integers. In this paper, we generalize the q-Bernstein-Schurer operators using (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-integers and obtain a Korovkin type approximation theorem. Furthermore, we obtain the convergence of the operators by using the modulus of continuity and prove some direct theorems.
引用
收藏
相关论文
共 46 条