Recurrence of multiples of composition operators on weighted Dirichlet spaces

被引:0
|
作者
Noureddine Karim
Otmane Benchiheb
Mohamed Amouch
机构
[1] Chouaib Doukkali University,Department of Mathematics, Faculty of science El Jadida
来源
关键词
Hypercyclicity; Recurrence; Composition operator; Dirichlet spaces; 47A16; 37B20; 46E50; 46T25;
D O I
暂无
中图分类号
学科分类号
摘要
A bounded linear operator T acting on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is said to be recurrent if for every non-empty open subset U⊂H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\subset \mathcal {H}$$\end{document} there is an integer n such that Tn(U)∩U≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^n (U)\cap U\ne \emptyset$$\end{document}. In this paper, we completely characterize the recurrence of scalar multiples of composition operators, induced by linear fractional self maps of the unit disk, acting on weighted Dirichlet spaces Sν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_\nu$$\end{document}; in particular on the Bergman space, the Hardy space, and the Dirichlet space. Consequently, we complete previous work of Costakis, Manoussos, and Parissis on the recurrence of linear fractional composition operators on Hardy space. In this manner, we determine the triples (λ,ν,ϕ)∈C×R×LFM(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\nu ,\phi )\in {\mathbb {C}}\times \mathbb {R}\times \mathrm{LFM}(\mathbb {D})$$\end{document} for which the scalar multiple of composition operator λCϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda C_\phi$$\end{document} acting on Sν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_\nu$$\end{document} fails to be recurrent.
引用
收藏
相关论文
共 50 条