Bicomplex Analogs of Segal–Bargmann and Fractional Fourier Transforms

被引:0
作者
Allal Ghanmi
Khalil Zine
机构
[1] Mohammed V University in Rabat,A.
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Bicomplex numbers; -holomorphic functions; -Bargmann space; -Segal–Bargmann transform; -fractional Fourier transform; Primary 30G35; 46C05; 44A15; Secondary 32A25; 32W50; 32A10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider and discuss some basic properties of the bicomplex analog of the classical Bargmann space. The explicit expression of the integral operator connecting the complex and bicomplex Bargmann spaces is also given. The corresponding bicomplex Segal–Bargmann transform is introduced and studied as well. Its explicit expression as well as the one of its inverse are then used to introduce a class of two-parameter bicomplex Fourier transforms (bicomplex fractional Fourier transform). This approach is convenient in exploring some useful properties of this bicomplex fractional Fourier transform.
引用
收藏
相关论文
共 48 条
[1]  
Banerjee A(2016)Inverse Fourier transform for bicomplex variables. Malaya J. Mat. 4 263-270
[2]  
Datta S.K(1961)On a Hilbert space of analytic functions and an associated integral transform Commun. Pure Appl. Math. 14 187-214
[3]  
Hoque Md.A(1962)Remarks on a Hilbert space of analytic functions Proc. Natl. Acad. Sci. 48 199-204
[4]  
Bargmann V(2019)On composition of Segal–Bargmann transforms Complex Var. Elliptic Equ. 64 950-964
[5]  
Bargmann V(2011)Singularities of functions of one and several bicomplex variables Ark. Mat. 49 277-294
[6]  
Benahmadi A(2011)Bicomplex hyperfunctions Ann. Mat. Pura Appl. (4) 190 247-261
[7]  
Diki K(2012)The Cauchy–Kowalewski product for bicomplex holomorphic functions Math. Nachr. 285 1230-1242
[8]  
Ghanmi A(1934)Sulle funzioni olomorfe di una variabile bicomplessa Reale Accademia d’Italia 5 597-665
[9]  
Colombo F(2011)Hilbert space of the bicomplex quantum harmonic oscillator AIP Conf. Proc. 1327 148-157
[10]  
Sabadini I(2010)Infinite dimensional bicomplex Hilbert spaces Ann. Funct. Anal. 1 75-91