Metric approach to a TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document}-like deformation in arbitrary dimensions

被引:0
作者
Riccardo Conti
Jacopo Romano
Roberto Tateo
机构
[1] Departamento de Matemática,Dipartimento di Fisica and Arnold
[2] Faculdade de Ciências da Universidade de Lisboa,Regge Center
[3] Max Planck Institute for Dynamics and Self-Organization,undefined
[4] Università di Torino,undefined
[5] INFN Sezione di Torino,undefined
关键词
Field Theories in Lower Dimensions; Integrable Field Theories;
D O I
10.1007/JHEP09(2022)085
中图分类号
学科分类号
摘要
We consider a one-parameter family of composite fields — bi-linear in the components of the stress-energy tensor — which generalise the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator to arbitrary space-time dimension d ≥ 2. We show that they induce a deformation of the classical action which is equivalent — at the level of the dynamics — to a field-dependent modification of the background metric tensor according to a specific flow equation. Even though the starting point is the flat space, the deformed metric is generally curved for any d > 2, thus implying that the corresponding deformation can not be interpreted as a coordinate transformation. The central part of the paper is devoted to the development of a recursive algorithm to compute the coefficients of the power series expansion of the solution to the metric flow equation. We show that, under some quite restrictive assumptions on the stress-energy tensor, the power series yields an exact solution. Finally, we consider a class of theories in d = 4 whose stress-energy tensor fulfils the assumptions above mentioned, namely the family of abelian gauge theories in d = 4. For such theories, we obtain the exact expression of the deformed metric and the vierbein. In particular, the latter result implies that ModMax theory in a specific curved space is dynamically equivalent to its Born-Infeld-like extension in flat space. We also discuss a dimensional reduction of the latter theories from d = 4 to d = 2 in which an interesting marginal deformation of d = 2 field theories emerges.
引用
收藏
相关论文
共 21 条
[1]  
Smirnov FA(2017) 2 Nucl. Phys. B 915 363-undefined
[2]  
Zamolodchikov AB(2013)undefined JHEP 07 071-undefined
[3]  
Caselle M(2012)undefined JHEP 09 133-undefined
[4]  
Fioravanti D(2019)undefined JHEP 11 120-undefined
[5]  
Gliozzi F(2022)undefined SciPost Phys. 13 012-undefined
[6]  
Tateo R(2021)undefined JHEP 03 022-undefined
[7]  
Dubovsky S(1966)undefined Commun. Math. Phys. 3 313-undefined
[8]  
Flauger R(undefined)undefined undefined undefined undefined-undefined
[9]  
Gorbenko V(undefined)undefined undefined undefined undefined-undefined
[10]  
Conti R(undefined)undefined undefined undefined undefined-undefined