Bessel pairs and optimal Hardy and Hardy–Rellich inequalities

被引:0
作者
Nassif Ghoussoub
Amir Moradifam
机构
[1] University of British Columbia,Department of Mathematics
来源
Mathematische Annalen | 2011年 / 349卷
关键词
Hardy Inequality; Good Constant; Bounded Smooth Domain; Integral Criterion; Bessel Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in Rn, n ≥ 1, so that the following inequalities hold for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in C_{0}^{\infty}(B)}$$\end{document} : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{one} \int\limits_{B}V(x)|\nabla u |^{2}dx \geq \int\limits_{B} W(x)u^2dx,$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{two} \int\limits_{B}V(x)|\Delta u |^{2}dx \geq\int\limits_{B} W(x)|\nabla u|^{2}dx+(n-1)\int\limits_{B}\left(\frac{V(x)}{|x|^2}-\frac{V_r(|x|)}{|x|}\right)|\nabla u|^2dx.$$\end{document}This characterization makes a very useful connection between Hardy-type inequalities and the oscillatory behaviour of certain ordinary differential equations, and helps in the identification of a large number of such couples (V, W)—that we call Bessel pairs—as well as the best constants in the corresponding inequalities. This allows us to improve, extend, and unify many results—old and new—about Hardy and Hardy–Rellich type inequalities, such as those obtained by Caffarelli et al. (Compos Math 53:259–275, 1984), Brezis and Vázquez (Revista Mat. Univ. Complutense Madrid 10:443–469, 1997), Wang and Willem (J Funct Anal 203:550–568, 2003), Adimurthi et al. (Proc Am Math Soc 130:489–505, 2002), and many others.
引用
收藏
页码:1 / 57
页数:56
相关论文
共 66 条
  • [31] Cordero-Erausquin C.(1951)The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential Am. J. Math. 73 368-380
  • [32] Nazaret E.B.(1957)Caffarelli-Kohn-Nirenberg inequalities with remainder terms Math. Scand. 5 255-260
  • [33] Villani E.B.(1969)On the nonexistence of conjugate points Trans. Am. Math. Soc. 144 197-215
  • [34] Davies A.M.(undefined)On the comparision theorem of Knese-Hille undefined undefined undefined-undefined
  • [35] Davies S.(undefined)Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients undefined undefined undefined-undefined
  • [36] Hinz A.(undefined)undefined undefined undefined undefined-undefined
  • [37] Filippas J.(undefined)undefined undefined undefined undefined-undefined
  • [38] Tertikas E.M.(undefined)undefined undefined undefined undefined-undefined
  • [39] Fleckinger F.(undefined)undefined undefined undefined undefined-undefined
  • [40] Harrell N.(undefined)undefined undefined undefined undefined-undefined