Bessel pairs and optimal Hardy and Hardy–Rellich inequalities

被引:0
作者
Nassif Ghoussoub
Amir Moradifam
机构
[1] University of British Columbia,Department of Mathematics
来源
Mathematische Annalen | 2011年 / 349卷
关键词
Hardy Inequality; Good Constant; Bounded Smooth Domain; Integral Criterion; Bessel Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in Rn, n ≥ 1, so that the following inequalities hold for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in C_{0}^{\infty}(B)}$$\end{document} : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{one} \int\limits_{B}V(x)|\nabla u |^{2}dx \geq \int\limits_{B} W(x)u^2dx,$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\label{two} \int\limits_{B}V(x)|\Delta u |^{2}dx \geq\int\limits_{B} W(x)|\nabla u|^{2}dx+(n-1)\int\limits_{B}\left(\frac{V(x)}{|x|^2}-\frac{V_r(|x|)}{|x|}\right)|\nabla u|^2dx.$$\end{document}This characterization makes a very useful connection between Hardy-type inequalities and the oscillatory behaviour of certain ordinary differential equations, and helps in the identification of a large number of such couples (V, W)—that we call Bessel pairs—as well as the best constants in the corresponding inequalities. This allows us to improve, extend, and unify many results—old and new—about Hardy and Hardy–Rellich type inequalities, such as those obtained by Caffarelli et al. (Compos Math 53:259–275, 1984), Brezis and Vázquez (Revista Mat. Univ. Complutense Madrid 10:443–469, 1997), Wang and Willem (J Funct Anal 203:550–568, 2003), Adimurthi et al. (Proc Am Math Soc 130:489–505, 2002), and many others.
引用
收藏
页码:1 / 57
页数:56
相关论文
共 66 条
  • [1] Adimurthi N.(2002)An improved Hardy Sobolev inequality and its applications Proc. Am. Math. Soc. 130 489-505
  • [2] Chaudhuri N.(2006)Optimal Hardy-Rellich inequalities, maximum principles and related eigenvalue problems J. Funct. Anal. 240 36-83
  • [3] Ramaswamy M.(2004)Geometric inequalities via a general comparison principle for interacting gases Geom. Funct. Anal. 14 215-244
  • [4] Adimurthi S.(2007)Best constants for higher-order Rellich inequalities in Math. Z. 255 877-896
  • [5] Grossi M.(2008)(Ω) Forum Math. 20 587-606
  • [6] Santra N.(2007)Weighted inequalities and Stein-Weiss potentials C. R. Acad. Sci. Paris, Ser. I 344 431-436
  • [7] Agueh X.S.(1985)Hardy-Poincaré inequalities and applications to nonlinear diffusions J. Funct. Anal. 62 73-86
  • [8] Ghoussoub G.(1997)Sobolev inequalities with remainder terms Ann. Scuola. Norm. Sup. Pisa 25 217-237
  • [9] Kang W.(2000)Hardy’s inequality revisited J. Funct. Anal. 171 177-191
  • [10] Barbatis A.(1997)Extremal functions for Hardy’s inequality with weight Revista Mat. Univ. Complutense Madrid 10 443-469