A class of projection and contraction methods for monotone variational inequalities

被引:0
作者
Bingsheng He
机构
[1] Nanjing University,Department of Mathematics
关键词
Variational inequality; Monotone operator; Projection; Contraction; 90C30; 90C33; 65K05;
D O I
10.1007/BF02683320
中图分类号
学科分类号
摘要
In this paper we introduce a new class of iterative methods for solving the monotone variational inequalities\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u* \in \Omega , (u - u*)^T F(u*) \geqslant 0, \forall u \in \Omega .$$ \end{document} Each iteration of the methods presented consists essentially only of the computation ofF(u), a projection to Ω,v:=PΩ[u-F(u)], and the mappingF(v). The distance of the iterates to the solution set monotonically converges to zero. Both the methods and the convergence proof are quite simple.
引用
收藏
页码:69 / 76
页数:7
相关论文
共 14 条
  • [11] Pang J. S.(1982)Iterative methods for variational and complementarity problems Mathematical Programming 24 284-313
  • [12] Pang J. S.(1994)A projection and contraction method for the nonlinear complementarity problem and its extensions Mathematica Numerica Sinica 16 183-194
  • [13] Chan D.(undefined)undefined undefined undefined undefined-undefined
  • [14] Sun D. F.(undefined)undefined undefined undefined undefined-undefined