A class of projection and contraction methods for monotone variational inequalities

被引:0
作者
Bingsheng He
机构
[1] Nanjing University,Department of Mathematics
关键词
Variational inequality; Monotone operator; Projection; Contraction; 90C30; 90C33; 65K05;
D O I
10.1007/BF02683320
中图分类号
学科分类号
摘要
In this paper we introduce a new class of iterative methods for solving the monotone variational inequalities\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u* \in \Omega , (u - u*)^T F(u*) \geqslant 0, \forall u \in \Omega .$$ \end{document} Each iteration of the methods presented consists essentially only of the computation ofF(u), a projection to Ω,v:=PΩ[u-F(u)], and the mappingF(v). The distance of the iterates to the solution set monotonically converges to zero. Both the methods and the convergence proof are quite simple.
引用
收藏
页码:69 / 76
页数:7
相关论文
共 14 条
  • [1] Bruck R. E.(1975)An iterative solution of a variational inequality for certain monotone operators in Hilbert space Bulletin of the American Mathematical Society 81 890-892
  • [2] Dafermos S.(1983)An iterative scheme for variational inequalities Mathematical Programming 26 40-47
  • [3] Eaves B. C.(1971)On the basic theorem of complementarity Mathematical Programming 1 68-75
  • [4] Harker P. T.(1990)Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications Mathematical Programming 48 161-220
  • [5] Pang J. S.(1992)A projection and contraction method for a class of linear complementarity problems and its application in convex quadratic programming Applied Mathematics and Optimization 25 247-262
  • [6] He B. S.(1994)A new method for a class of linear variational inequalities Mathematical Programming 66 137-144
  • [7] He B. S.(1994)Solving a class of linear projection equations Numerische Mathematik 68 71-80
  • [8] He B. S.(1976)The extragradient method for finding saddle points and other problems Matekon 12 747-756
  • [9] Korpelevich G. M.(1985)Asymmetric variational inequality problems over product sets: applications and iterative methods Mathematical Programming 31 206-219
  • [10] Pang J. S.(1986)Inexact Newton methods for the nonlinear complementarity problem Mathematical Programming 36 54-71