The TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation at large central charge

被引:0
作者
Ofer Aharony
Talya Vaknin
机构
[1] Weizmann Institute of Science,Department of Particle Physics and Astrophysics
关键词
1/N Expansion; Integrable Field Theories; Renormalization Group;
D O I
10.1007/JHEP05(2018)166
中图分类号
学科分类号
摘要
We study Zamolodchikov’s TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of two dimensional quantum field theories in a ’t Hooft-like limit, in which we scale the number of degrees of freedom c to infinity and the deformation parameter t to zero, keeping their product t · c fixed (more precisely, we keep energies and distances fixed in units of t · c). In this limit the Hagedorn temperature remains fixed, but other non-local aspects of the theory disappear. We show that in this limit correlation functions may be computed exactly, and they are local in space and polynomials in t. We compute explicitly the deformed three-point functions of the energy-momentum tensor for a TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed conformal field theory.
引用
收藏
相关论文
共 36 条
[1]  
Cavaglià A(2016)-deformed 2D quantum field theories JHEP 10 112-undefined
[2]  
Negro S(2017)On space of integrable quantum field theories Nucl. Phys. B 915 363-undefined
[3]  
Szécsényi IM(2000)Bosonic type S matrix, vacuum instability and CDD ambiguities Nucl. Phys. B 578 527-undefined
[4]  
Tateo R(2016)Quantum Quenches to a Critical Point in One Dimension: some further results J. Stat. Mech. 1602 136-undefined
[5]  
Smirnov FA(2016)A hydrodynamic approach to non-equilibrium conformal field theories J. Stat. Mech. 1603 343-undefined
[6]  
Zamolodchikov AB(2017)Asymptotic fragility, near AdS JHEP 09 41-undefined
[7]  
Mussardo G(1985) holography and Nucl. Phys. B 252 108-undefined
[8]  
Simon P(1983)Lower Dimensional Gravity Phys. Lett. B 126 010-undefined
[9]  
Cardy J(2017)Gravitation and Hamiltonian Structure in Two Space-Time Dimensions JHEP 10 122-undefined
[10]  
Bernard D(2018)Background independent holographic dual to JHEP 04 155-undefined