Representations, Products, and Varieties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-Groups

被引:0
作者
A. V. Zenkov
机构
[1] Altai State University of Agriculture,
关键词
-group; -Cartesian product; representation; variety; 512.545;
D O I
10.1134/S0037446622040115
中图分类号
学科分类号
摘要
Under study is the structure of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-homomorphic images of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-subgroups in a Cartesian product of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-groups which admit a faithful \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-transitive representation. We propose some construction that enables us to produce idempotents in the semigroup of varieties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-groups.
引用
收藏
页码:715 / 719
页数:4
相关论文
共 50 条
[41]   On SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,{\mathbb {C}})$$\end{document}-representations of torus knot groups [J].
Jhon Jader Mira-Albanés ;
José Gregorio Rodríguez-Nieto ;
Olga Patricia Salazar-Díaz .
São Paulo Journal of Mathematical Sciences, 2023, 17 (2) :615-637
[42]   Laplacian Spectrum of Two Classes of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Sum Graphs with Applications [J].
Yanru Zhuo ;
Shuming Zhou ;
Lulu Yang .
Circuits, Systems, and Signal Processing, 2024, 43 (12) :7448-7471
[44]   Index-stable compact p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{p}}$$\end{document}-adic analytic groups [J].
Francesco Noseda ;
Ilir Snopce .
Archiv der Mathematik, 2021, 116 (2) :153-160
[49]   Dynamic of Abelian Subgroups of GL(n, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C}$$\end{document}): A Structure Theorem [J].
Adlene Ayadi ;
Habib Marzougui .
Geometriae Dedicata, 2005, 116 (1) :111-127