共 50 条
[41]
On SL(2,C)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$SL(2,{\mathbb {C}})$$\end{document}-representations of torus knot groups
[J].
São Paulo Journal of Mathematical Sciences,
2023, 17 (2)
:615-637
[42]
Laplacian Spectrum of Two Classes of ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi $$\end{document}-Sum Graphs with Applications
[J].
Circuits, Systems, and Signal Processing,
2024, 43 (12)
:7448-7471
[43]
Representations of ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{*}$$\end{document}-Semigroups Associated to Invariant Kernels with Values Continuously Adjointable Operators
[J].
Integral Equations and Operator Theory,
2017, 87 (2)
:263-307
[44]
Index-stable compact p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{p}}$$\end{document}-adic analytic groups
[J].
Archiv der Mathematik,
2021, 116 (2)
:153-160
[45]
Augmentation quotients for Burnside rings of some finite p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{p}$$\end{document}-groups
[J].
Proceedings - Mathematical Sciences,
2019, 129 (1)
[46]
Quadratic Forms over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{Z}}$$\end{document} from Diophantus to the 290 Theorem
[J].
Advances in Applied Clifford Algebras,
2008, 18 (3-4)
:665-676
[47]
Lattices of topologies of unary algebras of the variety \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathcal{A}_{1,1}
$$\end{document}
[J].
Russian Mathematics,
2009, 53 (4)
:20-25
[48]
Dirac representation of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$SO(3,2)$$\end{document} group and the Landau problem
[J].
Theoretical and Mathematical Physics,
2023, 217 (2)
:1621-1639
[49]
Dynamic of Abelian Subgroups of GL(n, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{C}$$\end{document}): A Structure Theorem
[J].
Geometriae Dedicata,
2005, 116 (1)
:111-127
[50]
On the regular Sylow p-subgroups of Chevalley groups over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{Z}_{p^m } $$
\end{document}
[J].
Siberian Mathematical Journal,
2006, 47 (6)
:1054-1059