Representations, Products, and Varieties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-Groups

被引:0
作者
A. V. Zenkov
机构
[1] Altai State University of Agriculture,
关键词
-group; -Cartesian product; representation; variety; 512.545;
D O I
10.1134/S0037446622040115
中图分类号
学科分类号
摘要
Under study is the structure of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-homomorphic images of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-subgroups in a Cartesian product of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-groups which admit a faithful \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-transitive representation. We propose some construction that enables us to produce idempotents in the semigroup of varieties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ m $\end{document}-groups.
引用
收藏
页码:715 / 719
页数:4
相关论文
共 14 条
[1]  
Giraudet M(1991)Groupes á motié ordonnés Fund. Math. 139 75-89
[2]  
Lukas F(2013)On Math. Notes 94 157-159
[3]  
Zenkov AV(2013)-transitive groups Sib. Math. J. 54 227-230
[4]  
Varaksin SV(1995)On representations of Sib. Math. J. 36 656-660
[5]  
Zenkov AV(1999)-groups Czech. Math. J. 49 743-766
[6]  
Bayanova NV(2011)Reversional automorphisms of lattice-ordered groups Sib. Math. J. 52 1003-1008
[7]  
Nikonova OV(2003)Varieties of half lattice-ordered groups of monotonic permutations of chains Algebra Logic 42 349-355
[8]  
Giraudet M(2021)Wreath products of the groups of monotone permutations Sib. Electr. Math. Reports 18 54-60
[9]  
Rachůnek J(undefined)The greatest proper variety of undefined undefined undefined-undefined
[10]  
Zenkov AV(undefined)-groups undefined undefined undefined-undefined