Iterative regularization algorithms for constrained image deblurring on graphics processors

被引:0
作者
Valeria Ruggiero
Thomas Serafini
Riccardo Zanella
Luca Zanni
机构
[1] Università di Ferrara,Dipartimento di Matematica
[2] Università di Modena e Reggio Emilia,Dipartimento di Matematica
来源
Journal of Global Optimization | 2010年 / 48卷
关键词
Image deblurring; Scaled gradient projection method; Graphics processing units;
D O I
暂无
中图分类号
学科分类号
摘要
The ability of the modern graphics processors to operate on large matrices in parallel can be exploited for solving constrained image deblurring problems in a short time. In particular, in this paper we propose the parallel implementation of two iterative regularization methods: the well known expectation maximization algorithm and a recent scaled gradient projection method. The main differences between the considered approaches and their impact on the parallel implementations are discussed. The effectiveness of the parallel schemes and the speedups over standard CPU implementations are evaluated on test problems arising from astronomical images.
引用
收藏
页码:145 / 157
页数:12
相关论文
共 60 条
[1]  
Barzilai J.(1988)Two point step size gradient methods IMA J. Numer. Anal. 8 141-148
[2]  
Borwein J.M.(2009)A scaled gradient projection method for constrained image deblurring Inverse Probl. 25 015002-2066
[3]  
Bonettini S.(1991)Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems Ann. Stat. 19 2032-559
[4]  
Zanella R.(2005)On the asymptotic behaviour of some new gradient methods Math. Program. 103 541-627
[5]  
Zanni L.(2006)The cyclic barzilai-borwein method for unconstrained optimization IMA J. Numer. Anal. 26 604-312
[6]  
Csiszär I.(2008)New adaptive stepsize selections in gradient methods J. Ind. Manag. Optim. 4 299-289
[7]  
Dai Y.H.(1999)Gradient method with retards and generalizations SIAM J. Numer. Anal. 36 275-275
[8]  
Fletcher R.(1992)A parallel global optimization method and its implementation on a transputer system Optimization 26 261-593
[9]  
Dai Y.H.(1991)Convergence analysis for a multiplicatively relaxed EM algorithm Math. Meth. Appl. Sci. 14 573-67
[10]  
Hager W.W.(1992)A short convergence proof of the EM algorithm for a specific Poisson model REBRAPE 6 57-316