Some Properties of General Minimization Problems with Constraints

被引:0
作者
Vy K. Le
Dumitru Motreanu
机构
[1] University of Missouri-Rolla,Department of Mathematics and Statistics
[2] Université de Perpignan,Département de Mathématiques
来源
Set-Valued Analysis | 2006年 / 14卷
关键词
minimization problems; constraints; Palais–Smale condition;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies the existence of solutions and necessary conditions of optimality for a general minimization problem with constraints. Although we focus mainly on the case where the cost functional is locally Lipschitz, a general Palais–Smale condition is proposed and some of its properties are studied. Applications to an optimal control problem and a Lagrange multiplier rule are also given.
引用
收藏
页码:413 / 424
页数:11
相关论文
共 20 条
  • [1] Aizicovici S.(1999)Nonlinear programming problems associated with closed range operators Appl. Math. Optim. 40 211-228
  • [2] Motreanu D.(2004)Nonlinear mathematical programming and optimal control Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 503-524
  • [3] Pavel N.H.(1990)A note on Palais–Smale condition and coercivity Differential Integral Equations 3 799-800
  • [4] Aizicovici S.(1981)Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 102-129
  • [5] Motreanu D.(1991)The Palais–Smale condition versus coercivity Nonlinear Anal. 16 371-381
  • [6] Pavel N.H.(1979)Nonconvex minimization problems Bull. Amer. Math. Soc. (N.S.) 1 443-474
  • [7] Čaklović L.(1993)A note on Palais–Smale condition in the sense of Szulkin Differential Integral Equations 6 1041-1043
  • [8] Li S.J.(2000)A weak nonsmooth Palais–Smale condition and coercivity Rend. Circ. Mat. Palermo 49 521-526
  • [9] Willem M.(2002)Relation between the Palais–Smale condition and coerciveness for multivalued mappings Stud. Univ. Babeş-Bolyai Math. 47 67-72
  • [10] Chang K.C.(2000)Coerciveness property for a class of non-smooth functionals Z. Anal. Anwendungen 19 1087-1093