Coefficient Problems for Certain Close-to-Convex Functions

被引:0
作者
Mridula Mundalia
Shanmugam Sivaprasad Kumar
机构
[1] Delhi Technological University,Department of Applied Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2023年 / 49卷
关键词
Univalent functions; Close-to-convex functions; Hankel determinant; Logarithmic coefficient; Starlike with respect to symmetric points; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, bounds are established for the second Hankel determinant of logarithmic coefficients for normalised analytic functions satisfying certain differential inequality.
引用
收藏
相关论文
共 51 条
[1]  
Ali MF(2018)On logarithmic coefficients of some close-to-convex functions Proc. Am. Math. Soc. 146 1131-1142
[2]  
Vasudevarao A(1963)Power series with integral coefficients Bull. Am. Math. Soc. 69 362-366
[3]  
Cantor DG(1907)Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen Math. Ann. 64 95-115
[4]  
Carathéodory C(2020)On the third logarithmic coefficient in some subclasses of close-to-convex functions Rev. R. Acad. Cienc. Exactas Fís. Nat. 114 1-14
[5]  
Cho NE(2019)Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis Bull. Aust. Math. Soc. 100 86-96
[6]  
Kowalczyk B(2007)A general approach to the Fekete-Szegö problem J. Math. Soc. Jpn. 59 707-727
[7]  
Kwon OS(2018)On a subclass of close-to-convex functions Bull. Iran. Math. Soc. 44 611-621
[8]  
Lecko A(2000)The Hankel determinant of exponential polynomials Am. Math. Mon. 107 557-560
[9]  
Sim YJ(1968)On the second Hankel determinant of mean univalent functions Proc. Lond. Math. Soc. 18 77-94
[10]  
Cho NE(2006)Coefficient inequality for a function whose derivative has a positive real part JIPAM. J. Inequal. Pure Appl. Math. 7 1-5