Monotonicity and best approximation in Banach lattices

被引:0
|
作者
Shu Tao Chen
Xin He
H. Hudzik
机构
[1] Harbin Normal University,Department of Mathematics
[2] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Acta Mathematica Sinica, English Series | 2009年 / 25卷
关键词
Banach lattice; uniform monotonicity; strict monotonicity; upper (lower) locally uniform monotonicity; best approximation; 41A65; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Hudzik and Kurc discussed some best approximation problems in Banach lattices by means of monotonicities. This paper deals with more general best approximation problems in Banach lattices. Existence, uniqueness, stability and continuity for such best approximation problems are discussed.
引用
收藏
页码:785 / 794
页数:9
相关论文
共 50 条
  • [1] Monotonicity and best approximation in Banach lattices
    Chen, Shu Tao
    He, Xin
    Hudzik, H.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (05) : 785 - 794
  • [2] Monotonicity and Best Approximation in Banach Lattices
    H.HUDZIK
    Acta Mathematica Sinica(English Series), 2009, 25 (05) : 785 - 794
  • [3] New results for best approximation on Banach lattices
    Modarres, S. M. S.
    Dehghani, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3342 - 3347
  • [4] Monotonicity Properties of Banach Lattices and Their Applications - a Survey
    Foralewski, Pawel
    Hudzik, Henryk
    Kowalewski, Wojciech
    Wisla, Marek
    ORDERED STRUCTURES AND APPLICATIONS, 2016, : 203 - 232
  • [5] Monotonicity and complex convexity in Banach lattices
    Lee, HJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 86 - 101
  • [6] Moduli and Characteristics of Monotonicity in Some Banach Lattices
    Paweł Foralewski
    Henryk Hudzik
    Radosław Kaczmarek
    Miroslav Krbec
    Fixed Point Theory and Applications, 2010
  • [7] Monotonicity Properties and Order Smoothness in Banach Lattices
    Aleksandrowicz, Karol
    Markowicz, Joanna
    Prus, Stanislaw
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [8] Monotonicity and best approximation in Orlicz-Sobolev spaces with the Luxemburg norm
    Chen, Shutao
    He, Xin
    Hudzik, Henryk
    Kaminska, Anna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 687 - 698
  • [9] Moduli and characteristics of monotonicity in general Banach lattices and in Orlicz spaces in particular
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3407 - 3423
  • [10] Complex convexity and monotonicity in quasi-Banach lattices
    Han Ju Lee
    Israel Journal of Mathematics, 2007, 159 : 57 - 91