On finite groups with cyclic Abelian subgroups

被引:0
作者
Maznichenko S.V. [1 ]
机构
[1] Ukrainian Pedagogic University, Kiev
关键词
Finite Group; Nilpotent Group; Abelian Subgroup; Solvable Group; Proper Subgroup;
D O I
10.1007/BF02514337
中图分类号
学科分类号
摘要
Solvable and minimal unsolvable finite groups with cyclic Abelian subgroups are constructively described. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:839 / 841
页数:2
相关论文
共 50 条
[41]   Finite groups with systems of Σ-embedded subgroups [J].
WenBin Guo ;
Alexander N. Skiba .
Science China Mathematics, 2011, 54 :1909-1926
[42]   Finite groups with a system of nilpotent subgroups [J].
Li, SR ;
Dark, RS .
ALGEBRA COLLOQUIUM, 2005, 12 (02) :199-204
[43]   On finite groups with given maximal subgroups [J].
V. S. Monakhov ;
V. N. Tyutyanov .
Siberian Mathematical Journal, 2014, 55 :451-456
[44]   A Criterion for Subnormality of Subgroups in Finite Groups [J].
Hua Quan WEI ;
Hong Fei PAN ;
Shu Qin DONG ;
Xu SUN .
Acta Mathematica Sinica,English Series, 2012, (08) :1575-1580
[45]   A criterion for subnormality of subgroups in finite groups [J].
Wei, Hua Quan ;
Pan, Hong Fei ;
Dong, Shu Qin ;
Sun, Xu .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) :1575-1580
[46]   A criterion for subnormality of subgroups in finite groups [J].
Hua Quan Wei ;
Hong Fei Pan ;
Shu Qin Dong ;
Xu Sun .
Acta Mathematica Sinica, English Series, 2012, 28 :1575-1580
[47]   Finite groups with seminormal Schmidt subgroups [J].
V. N. Knyagina ;
V. S. Monakhov .
Algebra and Logic, 2007, 46 :244-249
[48]   On finite groups with given maximal subgroups [J].
Monakhov, V. S. ;
Tyutyanov, V. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (03) :451-456
[49]   Gradewise properties of subgroups of finite groups [J].
Guo, W. ;
Skiba, A. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (03) :384-392
[50]   Finite groups with abnormal and -subnormal subgroups [J].
Monakhov, V. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) :352-363