On finite groups with cyclic Abelian subgroups

被引:0
作者
Maznichenko S.V. [1 ]
机构
[1] Ukrainian Pedagogic University, Kiev
关键词
Finite Group; Nilpotent Group; Abelian Subgroup; Solvable Group; Proper Subgroup;
D O I
10.1007/BF02514337
中图分类号
学科分类号
摘要
Solvable and minimal unsolvable finite groups with cyclic Abelian subgroups are constructively described. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:839 / 841
页数:2
相关论文
共 50 条
[31]   On Infinite Groups with Complemented Non-Abelian Subgroups [J].
Baryshovets, P. P. .
UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) :1599-1611
[32]   On Infinite Groups with Complemented Non-Abelian Subgroups [J].
P. P. Baryshovets .
Ukrainian Mathematical Journal, 2014, 65 :1599-1611
[33]   Dominions in abelian subgroups of metabelian groups [J].
A. I. Budkin .
Algebra and Logic, 2012, 51 :404-414
[34]   Finite groups with subnormal second or third maximal subgroups [J].
Yu. V. Lutsenko ;
A. N. Skiba .
Mathematical Notes, 2012, 91 :680-688
[35]   On finite groups with relatively large centralizers of invariant subgroups [J].
V. A. Antonov ;
T. G. Nozhkina .
Mathematical Notes, 2014, 95 :579-585
[36]   Dominions in abelian subgroups of metabelian groups [J].
Budkin, A. I. .
ALGEBRA AND LOGIC, 2012, 51 (05) :404-414
[37]   On finite groups with relatively large centralizers of invariant subgroups [J].
Antonov, V. A. ;
Nozhkina, T. G. .
MATHEMATICAL NOTES, 2014, 95 (5-6) :579-585
[38]   Finite groups with subnormal second or third maximal subgroups [J].
Lutsenko, Yu. V. ;
Skiba, A. N. .
MATHEMATICAL NOTES, 2012, 91 (5-6) :680-688
[39]   On Products of F*(G)-Subnormal Subgroups of Finite Groups [J].
Murashka, V., I .
MATHEMATICAL NOTES, 2022, 111 (1-2) :273-280
[40]   Complemented subgroups and the structure of finite groups [J].
Yangming Li ;
Ning Su ;
Yanming Wang .
Monatshefte für Mathematik, 2014, 173 :361-370