Multiplicity of positive solutions of a nonlinear Schrödinger equation

被引:0
作者
Yanheng Ding
Kazunaga Tanaka
机构
[1] Academy of Mathematics and Systems Sciences,Institute of Mathematics
[2] Chinese Academy of Sciences,Department of Mathematics
[3] School of Science and Engineering,undefined
[4] Waseda University,undefined
来源
manuscripta mathematica | 2003年 / 112卷
关键词
Boundary Condition; Continuous Function; Dirichlet Boundary; Dirichlet Boundary Condition; Limit Function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the multiple existence of positive solutions of the following nonlinear Schrödinger equation: [inline-graphic not available: see fulltext] where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{p\in (1, {{N+2}\over{ N-2}})}}$\end{document} if N≥3 and p(1, ∞) if N=1,2, and a(x), b(x) are continuous functions. We assume that a(x) is nonnegative and has a potential well Ω := int a−1(0) consisting of k components \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\Omega_1, \ldots, \Omega_k}}$\end{document} and the first eigenvalues of −Δ+b(x) on Ωj under Dirichlet boundary condition are positive for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{j=1,2,\ldots,k}}$\end{document}. Under these conditions we show that (PMλ) has at least 2k−1 positive solutions for large λ. More precisely we show that for any given non-empty subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{J\subset\{1,2,\ldots k\}}}$\end{document}, (Pλ) has a positive solutions uλ(x) for large λ. In addition for any sequence λn→∞ we can extract a subsequence λni along which uλni converges strongly in H1(RN). Moreover the limit function u(x)=limi→∞uλni satisfies (i) For jJ the restriction u|Ωj of u(x) to Ωj is a least energy solution of −Δv+b(x)v=vp in Ωj and v=0 on ∂Ωj. (ii) u(x)=0 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{x\in {\bf R}^N\setminus(\bigcup_{{j\in J}} \Omega_j)}}$\end{document}.
引用
收藏
页码:109 / 135
页数:26
相关论文
共 50 条
[41]   The Absolute Continuity of the Integrated Density¶of States for Magnetic Schrödinger Operators¶with Certain Unbounded Random Potentials [J].
Thomas Hupfer ;
Hajo Leschke ;
Peter Müller ;
Simone Warzel .
Communications in Mathematical Physics, 2001, 221 :229-254
[42]   Scattering and Wave Operators for One-Dimensional Schrödinger Operators with Slowly Decaying Nonsmooth Potentials [J].
M. Christ ;
A. Kiselev .
Geometric & Functional Analysis GAFA, 2002, 12 :1174-1234
[43]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A CLASS OF DIRICHLET PROBLEMS WITH IMPULSIVE EFFECTS [J].
Yingliang Song .
Annals of Applied Mathematics, 2013, (02) :195-202
[44]   TRIPLE POSITIVE SOLUTIONS FOR SYSTEM OF NONLINEAR SECOND-ORDER THREE POINT BOUNDARY VALUE PROBLEM [J].
Naceri, Mostepha ;
Elhaffaf, Amir .
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2013, 11 (02) :119-134
[45]   Pointwise Growth and Uniqueness of Positive Solutions for a Class of Sublinear Elliptic Problems where Bifurcation from Infinity Occurs [J].
J. García‐Melián ;
R. Gómez‐Reñasco ;
J. López‐Gómez ;
J. C. Sabina de Lis .
Archive for Rational Mechanics and Analysis, 1998, 145 :261-289
[46]   Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on ${\bf R}^n$ [J].
Soohyun Bae ;
Wei-Ming Ni .
Mathematische Annalen, 2001, 320 :191-210
[47]   A nonlinear wave equation with jumping nonlinearity [J].
Choi, QH ;
Jung, T .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (04) :797-802
[48]   Periodic solutions of a quasilinear wave equation [J].
V. A. Kondrat’ev ;
I. A. Rudakov .
Mathematical Notes, 2009, 85 :34-50
[49]   Periodic solutions of a quasilinear wave equation [J].
Kondrat'ev, V. A. ;
Rudakov, I. A. .
MATHEMATICAL NOTES, 2009, 85 (1-2) :34-50
[50]   Doubly nonlinear isotropic fractional parabolic equation [J].
Huaroto, Gerardo .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) :915-941