Leptons, Quarks, and Gauge from the Complex Clifford Algebra Cℓ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\ell _6$$\end{document}

被引:0
作者
Ovidiu Cristinel Stoica
机构
[1] National Institute of Physics and Nuclear Engineering – Horia Hulubei,Department of Theoretical Physics
关键词
Beyond standard model; Grand unified theory; Clifford algebra; Weinberg angle; Primary 15A66; Secondary 81V22;
D O I
10.1007/s00006-018-0869-4
中图分类号
学科分类号
摘要
A simple geometric algebra is shown to contain automatically the leptons and quarks of a family of the Standard Model, and the electroweak and color gauge symmetries, without predicting extra particles and symmetries. The algebra is already naturally present in the Standard Model, in two instances of the Clifford algebra Cℓ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\ell _6$$\end{document}, one being algebraically generated by the Dirac algebra and the weak symmetry generators, and the other by a complex three-dimensional representation of the color symmetry, which generates a Witt decomposition which leads to the decomposition of the algebra into ideals representing leptons and quarks. The two instances being isomorphic, the minimal approach is to identify them, resulting in the model proposed here. The Dirac and Lorentz algebras appear naturally as subalgebras acting on the ideals representing leptons and quarks. The resulting representations on the ideals are invariant to the electromagnetic and color symmetries, which are generated by the bivectors of the algebra. The electroweak symmetry is also present, and it is already broken by the geometry of the algebra. The model predicts a bare Weinberg angle θW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _W$$\end{document} given by sin2θW=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin ^2\theta _W=0.25$$\end{document}. The model shares common ideas with previously known models, particularly with Chisholm and Farwell (Clifford (Geometric) algebras: with applications to physics, mathematics, and engineering. Birkhäuser Boston, Boston, pp 365–388, 1996), Trayling and Baylis (Clifford Algebras: applications to mathematics, physics, and engineering. Birkhäuser Boston, Boston, pp 547–558, 1996), and Furey (Standard Model Physics from an Algebra? Preprint arXiv:1611.09182, 2016).
引用
收藏
相关论文
共 31 条
  • [1] Baez J(2010)The algebra of grand unified theories Am. Math. Soc. 47 483-552
  • [2] Huerta J(1977)Quantized grassmann variables and unified theories Phys. Lett. B 67 344-346
  • [3] Barducci A(2000)Gauge and space-time symmetry unification Int. J. Theor. Phys. 39 2797-2836
  • [4] Buccella F(1979)Unified description of quarks and leptons Phys. Lett. B 88 306-310
  • [5] Casalbuoni R(2017)Clifford algebraic unification of conformal gravity with an extended Standard Model Adv. Appl. Clifford Algebras 27 1031-1042
  • [6] Lusanna L(2017)Gauge group of the standard model in Adv. Appl. Clifford Algebras 27 279-290
  • [7] Sorace E(2015)Electro-weak Gauge, Weinberg-Salam angle J. Mod. Phys. 6 2080-3669
  • [8] Besprosvany J(1993)Lie groups as spin groups J. Math. Phys. 34 3642-449
  • [9] Casalbuoni R(2016)Exceptional quantum geometry and particle physics Nucl. Phys. B 912 426-266
  • [10] Gatto R(1975)Unified interactions of leptons and hadrons Ann. Phys. 93 193-199