Multiple Positive Solutions of the Singular Boundary Value Problem for Second-Order Impulsive Differential Equations on the Half-Line

被引:0
作者
Jing Xiao
JuanJ Nieto
Zhiguo Luo
机构
[1] Hunan Normal University,Department of Mathematics
[2] Universidad de Santiago de Compostela,Departamento de Análisis Matemático, Facultad de Matemáticas
来源
Boundary Value Problems | / 2010卷
关键词
Differential Equation; Green Function; Fixed Point Theorem; Unbounded Domain; Jump Discontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper uses a fixed point theorem in cones to investigate the multiple positive solutions of a boundary value problem for second-order impulsive singular differential equations on the half-line. The conditions for the existence of multiple positive solutions are established.
引用
收藏
相关论文
共 34 条
[1]  
Kaufmann ER(2008)A second-order boundary value problem with impulsive effects on an unbounded domain Nonlinear Analysis: Theory, Methods & Applications 69 2924-2929
[2]  
Kosmatov N(2006)Multiplicity positive solutions to periodic problems for first-order impulsive differential equations Journal of Computers & Mathematics with Applications 52 953-966
[3]  
Raffoul YN(2001)Existence of solutions for Nonlinear Analysis: Theory, Methods & Applications 47 741-752
[4]  
Zhang X(2004)th order impulsive integro-differential equations in a Banach space Nonlinear Analysis: Theory, Methods & Applications 56 985-1006
[5]  
Li X(2008)Multiple positive solutions of a boundary value problem for Applied Mathematics and Computation 203 649-659
[6]  
Jiang D(2005)th-order impulsive integro-differential equations in a Banach space Nonlinear Analysis: Theory, Methods & Applications 63 618-641
[7]  
Wang K(2008)A unique positive solution for Nonlinear Analysis: Theory, Methods & Applications 68 2727-2740
[8]  
Guo D(2009)th-order nonlinear impulsive singular integro-differential equations on unbounded domains in Banach spaces Nonlinear Analysis: Theory, Methods & Applications 70 2078-2090
[9]  
Guo D(2009)Multiple positive solutions of a boundary value problem for Nonlinear Analysis: Theory, Methods & Applications 70 772-787
[10]  
Zhang H(2010)th-order impulsive integro-differential equations in Banach spaces Nonlinear Analysis: Theory, Methods & Applications 72 580-586